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Deep Learned Optical Multiplexing for Multi-Focal
Plane Microscopy
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Jake Chanenson, Eva-Maria S. Collins, and Vidya Ganapati

Abstract—To obtain microscope images at multiple focal
planes, the distance between the objective and sample can be
mechanically adjusted. Images are acquired sequentially at each
axial distance. Digital refocusing with a light-emitting diode
(LED) array microscope allows elimination of this mechanical
movement. In an LED array microscope, the light source of a con-
ventional widefield microscope is replaced with a 2-dimensional
LED matrix. A stack of images is acquired from the LED array
microscope by sequentially illuminating each LED and capturing
an image. Previous work has shown that we can achieve digital
refocusing by post-processing this LED image stack. Though
mechanical scanning is eliminated, digital refocusing with an
LED array microscope has low temporal resolution due to the
acquisition of multiple images.

In this work, we propose a new paradigm for multi-focal
plane microscopy for live imaging, utilizing an LED array
microscope and deep learning. In our deep learning approach,
we look for a single LED illumination pattern that allows the
information from multiple focal planes to be multiplexed into a
single image. We jointly optimize this LED illumination pattern
with the parameters of a post-processing deep neural network,
using a training set of LED image stacks from fixed, not live,
Dugesia japonica planarians. Once training is complete, we obtain
multiple focal planes by inputting a single multiplexed LED
image into the trained post-processing deep neural network. We
demonstrate live imaging of a D. japonica planarian at 5 focal
planes with our method.

I. INTRODUCTION AND BACKGROUND

When looking at a thick specimen through a microscope,
parts of the specimen not in the focal plane appear blurred. The
blur is increased in parts of the specimen further away from
the focal plane. If the axial distance between the specimen
and the microscope objective is adjusted, a different axial
plane will come into focus. Imaging at multiple focal planes
thus allows us to obtain an understanding of the specimen’s
3-dimensional structure. Generally, to refocus to a different
axial plane, mechanical adjustment of the distance between
the sample and optics is necessary. Often it is expensive and
time-intensive to mechanically scan the sample. Scanning and
collecting images at multiple focal planes is especially difficult
for live imaging, as the sample might move during acquisition
of an image stack.

Digital refocusing refers to techniques that emulate axial
mechanical scanning without moving the sample or optics.
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One method to achieve digital refocusing is light-field mi-
croscopy [1]. In light-field microscopy, a lenslet array is
used to capture angular information at each spatial point.
From the angular and spatial information collected, we can
computationally post-process and determine what the image
looks like at different focal planes. However, the collection
of angular information comes with a tradeoff; we lose spatial
resolution.

Another way to capture multiple planes in a single-shot is
to use a carefully engineered diffractive optical element [2]–
[4]. With this approach, the pixels of the camera are split into
blocks, and each block contains an image from a different focal
plane. Each focal plane image has a reduced field-of-view
since the image sensor pixels are split up. This method also
has the disadvantage of requiring a costly diffractive optical
element.

Phase retrieval techniques also capture information that
allows for refocusing to multiple planes. Many phase retrieval
techniques use interferometry, which requires well-controlled
alignment of a laser. Non-interferometric phase retrieval tech-
niques generally require the acquisition of multiple images,
sometimes with mechanical scanning [5].

Multi-focal plane microscopy is also possible with a light-
emitting diode (LED) array microscope. In an LED array
microscope, the light source of a conventional widefield micro-
scope is replaced with a 2-dimensional LED matrix. A stack of
images can be acquired from the LED array microscope by se-
quentially illuminating each LED and acquiring an image. The
LEDs are far enough away from the sample that single LED
illumination can be approximated as a plane wave at a certain
angle. From the stack of collected images, different focal plane
images can be reconstructed [6], [7]. The reconstruction of the
focal stack is similar to light-field processing, except without
the spatial resolution tradeoff. Though mechanical scanning is
eliminated, digital refocusing with an LED array microscope
still has low temporal resolution, due to the necessity of
acquiring one image per LED.

An LED array microscope has proven useful for techniques
other than digital refocusing, such as high space-bandwidth
reconstruction of complex objects [8]. For a thin sample, we
can use an LED array microscope to collect the image stack
(1 image per LED) and then computationally reconstruct both
phase and amplitude. In the computational reconstruction, we
achieve resolution above the numerical aperture of the micro-
scope objective. The field-of-view is unchanged, but resolution
is improved, so the reconstruction has a high space-bandwidth
product. However, the acquisition time is long. Multiplexed
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LED patterns, where multiple LEDs are illuminated at once,
allow the number of total images to be reduced [9], [10].

To further reduce the number of images needed, deep
learning has been applied [11]–[18]. In our previous work,
we demonstrated the use of deep learning to allow object
reconstruction with a single multiplexed LED image [11],
[12]. During training, we co-optimized the LED illumination
pattern with a post-processing deep neural network. The post-
processing deep neural network computationally transforms
the single collected image into the complex object we would
expect from iterative processing with a full stack of single
LED images. By including the LED illumination pattern in the
optimization of the neural network, we find that the mutual
information between the collected image and the desired
object reconstruction increases [11]. Our finding highlights the
importance of “physical preprocessing:” optimizing physical
parameters of the imaging system to collect the most infor-
mative measurements.

In this work, we apply the idea of physical preprocessing
to multi-focal plane microscopy. Our goal is to enable single-
shot collection of multiple focal plane images without sac-
rificing resolution or field-of-view. We achieve this goal by
co-optimizing a single multiplexed LED illumination pattern
with a post-processing deep neural network. In this approach,
our LED illumination pattern and neural network parameters
are tuned for a specific sample type.

We make several new contributions in this work. First, we
demonstrate single-shot multi-focal plane microscopy without
loss of resolution or field-of-view, with minimal hardware
modifications to a conventional widefield microscope. Second,
we show that the mutual information between the collected
measurement and desired multi-focal image reconstruction is
increased with our optimized LED illumination pattern. We
show this increase in mutual information for real data, as
opposed to simulated data in [11]. Finally, we demonstrate
single-shot live sample imaging at 5 focal planes.

II. METHODS

A. LED Array Microscope

Our experimental setup is shown in Fig. 1. A programmable
matrix of 32 × 32 LEDs with a 4 mm pitch (Adafruit) is the
illumination source of a widefield microscope (Nikon Eclipse
TE300). In this work, only the 69 centermost LEDs of the
matrix are utilized. The LED matrix is at an axial distance of
69.5 mm away from the sample, and the LED wavelength is
centered around 518 nm. Images are collected using a 16 bit
image sensor with 2048 × 2048 pixels, with pixel size of 6.5
× 6.5 µm (pco.edge 4.2 LT). The microscope objective has
10× magnification and numerical aperture of 0.3 (Nikon CFI
Plan Fluor).

We assume that the LEDs are far enough away from the
sample that the illumination from a single LED approximates
a plane wave [8]. We also assume that the light from the LEDs
is mutually incoherent, as in [9]. To approximate the image
from a multiplexed LED illumination pattern, we can take a
weighted sum of the single LED image stack:

Fig. 1: In our optical setup, we replace a conventional micro-
scope light source with a 2-dimensional light-emitting diode
(LED) matrix. Each LED has 8 brightness levels, from no light
to maximum brightness. Multiple LEDs can be illuminated at
once to create different multiplexed illumination patterns.

I =

n∑
i=1

ciIi, (1)

where n is the total number of illuminated LEDs and ci is the
relative intensity of LED i.

B. Digital Refocusing with Shift-Add

With our LED array microscope, we collect a stack of 69
images. Each image is illuminated using a single LED and
captured with an exposure time of 2 seconds. From this stack
of images, we can digitally refocus to different focal planes
with the shift-add algorithm [6], [7]. Similar to conventional
light-field processing [1], the shift-add algorithm makes the
assumptions of geometric optics. We assume that the light
from a single LED impinging on the sample all comes from a
single direction. If the thick 3-dimensional sample is assumed
to modulate only the intensity of the incoming light and not
the phase, we assume by geometric optics that the light at the
image plane remains at the same angle from the optical axis. If
we simply add all the LED images together, we get the image
at the focal plane. This is the same image as would be obtained
by physically illuminating all the LEDs simultaneously. In
order to digitally refocus to some axial offset ∆z, we must
shear the LED stack and add the resulting images together. The
amount each LED image must be shifted depends on both ∆z
and the angle of the light rays. A steeper angle and a greater
∆z offset both mean a greater shift.

The lateral position of the LED (xi, yi) determines the angle
of illumination (θx, θy):

tan (θx) =
xi
z
, (2)
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tan (θy) =
yi
z
, (3)

where z denotes the distance between the sample and the LED
matrix.

To refocus to an axial position z + ∆z, each LED image
must be shifted by ∆x and ∆y as follows:

∆x = ∆z tan (θx) , (4)

∆y = ∆z tan (θy) . (5)

To obtain subpixel shifts, we shift in Fourier space as
follows:

Ishift = F−1
(
F (I) ej2π(u∆x+v∆y)

)
, (6)

where I denotes the collected LED intensity image, F and
F−1 denote the Fourier and inverse Fourier transforms respec-
tively, and u and v denote the spatial frequency coordinates.

To obtain the final refocused image at z + ∆z, we sum all
the shifted images:

I∆z =

n∑
i=1

Ishift,i (7)

where n denotes the total number of illuminated LEDs and
Ishift,i is the shifted intensity image from LED i.

Fig. 2 shows an example of the results of the shift-add
algorithm.

Fig. 2: Digital refocusing of a D. japonica planarian over 1
mm with application of the shift-add algorithm to the 69 LED
image stack.

C. Deep Learning

The shift-add algorithm described in the previous section
requires a separate image to be collected from each LED.
Though we have eliminated mechanical scanning in this
method, we still have to collect multiple images. In this work,
we take a deep learning approach in order to obtain the same
results with just a single collected image. In this deep learning
approach, we first collect a training dataset using sequential
LED scanning and image acquisition. For each field-of-view
in our training dataset, we collect all 69 single LED images.
We then construct a neural network graph, where the first layer
outputs a linear weighted sum of the 69 input images using
Eqn. 1. The weights of the layer correspond to the relative
intensities of each LED in a multiplexed LED illumination
pattern. The output of this layer is thus the image you would
expect if the multiplexed illumination pattern was used in the
LED array microscope. This single image is inputted into a

convolutional neural network that outputs m images, where m
is the number of focal planes we are trying to reconstruct. The
convolutional neural network uses residual connections and
is inspired by the network architecture in [19]. The network
architecture used in this work is similar to that in [11], [12],
with the exception that we have m output images, instead of
a single complex output.

The LED illumination pattern and convolutional network
weights and biases are optimized by training the deep neural
network. Our objective in training is to minimize the error
between the neural network output and the results of the shift-
add algorithm. We calculate the error using a combination of
mean-squared error of the images and the first differences, as
in [11], [12]. As in [11], [12], in every iteration of training,
random Poisson noise is added to the multiplexed LED image,
and image saturation is modeled. At the end of training, we
normalize the LED weights and modify the exposure time
accordingly, so that we obtain the lowest exposure time. As
our LED array can only accommodate 8 discrete brightness
levels, we also round the LED weights to the nearest level at
the end of training.

Our approach is summarized in Fig. 3.
1) Training: For the training dataset, we collect LED image

stacks in 90 fields-of-view (6 sample slides, 15 field-of-views
per sample). Each LED stack consists of 69 images acquired
with sequential LED scanning.

The biological specimens used in this work are Dugesia
japonica planarians. For the training dataset, D. japonica
planarians are fixed following standard procedures in [20].
Planarians are placed into 100% glycerol for mounting on
custom made tunnel slides using double-stick tape, as in [21].

The single LED image stacks are used to train the neural
network graph to determine the optimal multiplexed LED
illumination pattern and parameters of the post-processing
convolutional neural network.

2) Fine-Tuning and Evaluation: In the training of the neural
network, we model the formation of a single image under a
multiplexed LED illumination pattern. To account for errors in
this model, a fine-tuning step is performed, wherein a 69 LED
image stack is collected as before. In addition, a multiplexed
LED image illuminated with the optimized LED pattern is
also collected. The multiplexed LED image is inputted directly
into the post-processing convolutional neural network, and the
weights and biases are re-optimized. Again, we minimize the
error between the output of the neural network and the result
of the shift-add algorithm on the full 69 LED image stack.

After fine-tuning is complete, we evaluate the performance
of the neural network using fields-of-view that were not pre-
viously used in training or fine-tuning. To prevent overfitting,
no training or fine-tuning was performed after the evaluation
results were obtained.

For the fine-tuning and evaluation steps, we collect images
in 40 total fields-of-view (2 sample slides, 20 fields-of-view
per sample). The evaluation dataset consists of 8 random field-
of-views selected from this dataset.

Fig. 4 illustrates an evaluation example at various points in
the imaging pipeline.
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Fig. 3: Diagram of training and evaluation of our deep learning framework. (a) In the training step, 69 images are collected for
each field-of-view, with each of the 69 images corresponding to illumination with a single LED. During training, we emulate
the collection of a single image with a multiplexed illumination pattern. In the illumination pattern, every LED in the matrix
is allowed to take a grayscale brightness value. This emulated single image is fed into a post-processing neural network. The
output of the post-processing neural network is 5 images, with each image attempting to focus at a different z distance. The
illumination pattern and the parameters (weights and biases) of the post-processing neural network are co-optimized during
training. The optimization objective is to minimize the difference between the neural network output and a digitally refocused
image stack. The digitally refocused image stack of 5 focal planes is calculated by applying the shift-add algorithm to the stack
of 69 LED images. (b) In the evaluation step, the optimized illumination pattern is programmed onto the LED matrix of the
actual microscope. The single image that is collected from the microscope is then directly fed into the trained post-processing
neural network. In the ideal case, the output of the neural network, obtained by a single image, should match the result obtained
by collecting 69 separate LED images and applying the shift-add algorithm.

3) Live Imaging: After the neural network is trained and
fine-tuned, we collect videos of live, unfixed D. japonica
planarians with the optimized LED illumination pattern. We
then feed each frame of the video into the post-processing
neural network layers to reconstruct 5 focal plane images
per frame. In this step, we no longer need the full 69 LED
image stack. By keeping the LED matrix statically illuminated
with the optimized LED illumination pattern, we can perform
single-shot, live imaging of 5 focal planes without loss in
resolution or field-of-view.

For live imaging, planarians are mounted in a drop of 1×
Instant Ocean (IO, Blacksburg, VA, USA) and then most of
the water is removed.

III. RESULTS AND DISCUSSION

A. Comparison of Shift-Add and Deep Learning

In Fig. 5 we show a comparison of results between the shift-
add algorithm (requiring the full LED stack of 69 images) and
the deep learning approach proposed in this work (requiring
a single multiplexed LED image) for 3 fields-of-view in the
evaluation dataset. The linescans show a good match between
the 2 methods. We note that it appears that the neural network
approach filters out some random noise present in the shift-add
algorithm results. This noise filtering agrees with the results

in [22], where the authors demonstrate that a neural network
cannot learn zero-mean noise.

B. Mutual Information

With a small simulated dataset, we show in [11] that
optimizing the physical parameters of data collection increases
the mutual information between the measurement and the
desired final output. We call data collection with these trained
parameters “optimal physical preprocessing.” Optimal physical
preprocessing allows for less data to be collected without
harming the final reconstruction result. This lets us create
faster and cheaper imaging systems with no loss in image
quality. In this work, we show a mutual information increase
with optimal physical preprocessing for a larger dataset of real
images.

We determine the mutual information between 16× 16 pixel
patches of the multiplexed LED images and the corresponding
5 focal plane stacks of size 5 × 16 × 16 pixels. Mutual infor-
mation quantifies how much the multiplexed LED illumination
images “tell” us about the 5 focal plane stack. If the mutual
information matches the entropy of the focal plane stacks, we
should be able to perfectly reconstruct the 5 focal planes from
the multiplexed LED image. Mutual information is calculated
by:
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Fig. 4: This figure illustrates an evaluation example, a field-
of-view that was not used in training or fine-tuning. The top
row shows 5 of the total 69 LED images, each illuminated
by a single LED of the LED matrix. The next row shows the
single LED image obtained by illuminating with the optimized
illumination pattern. This optimized LED pattern image is
transformed by the post-processing neural network to generate
the focal stack shown in the third row. The forth and final
row is the focal stack computed by the shift-add algorithm,
using all 69 single LED images. Qualitatively, we see that
there is agreement between the predicted digitally refocused
image stack from the neural network and the actual digitally
refocused stack from the shift-add algorithm. We note that the
shift-add algorithm assumes geometric optics and doesn’t take
into account wave effects. Thus, the coherent wave diffraction
patterns present in the single LED images are averaged out in
the refocused image stack.

∑
y∈Y

∑
x∈X

p (x, y) log2

(
p (x, y)

p(x)p(y)

)
, (8)

where p(x) is the marginal probability distribution of 5 focal
plane stacks, p(y) is the marginal probability distribution of
the multiplexed LED images, and p(x, y) is the joint prob-
ability distribution. The Non-Parametric Entropy Estimation
Toolbox (NPEET) [23] was used to estimate the probability
distributions and calculate the mutual information. For every
x ∈ X , we generated 10 samples of y with random Poisson
noise to approximate the distribution p(y | X = x).

We show the mutual information with different multiplexed
LED illumination patterns in Fig. 6, comparing mutual infor-
mation among optimized, uniform, and random LED illumi-
nation patterns. We observe the highest mutual information
for the optimized LED illumination pattern. Our observation
validates the simulation result in [11] with real data and
underscores the importance of optimal physical preprocessing.
In our joint optimization procedure of the illumination pattern
and the post-processing parameters, the LED illumination pat-
tern changes so that more information about the desired 5 focal

Fig. 5: Comparisons between the actual digitally refocused
image stack, using 69 single LED images with the shift-
add algorithm, and the predicted digitally refocused stack,
using only the single image collected with the optimized LED
illumination pattern and neural network post-processing. The
linescans show good fidelity of the neural network output to
the ground truth shift-add result.

plane stack is physically encoded in the single multiplexed
LED image.

C. Live Imaging

The deep learning approach in this work allows us to train
on fixed samples but evaluate on live samples. The training
step requires collection of the full 69 LED image stack (1
image per LED) per field-of-view. Once training is complete,
only a single image is needed for multiple focal-plane re-
construction. With the trained LED illumination pattern and
post-processing neural network parameters, we demonstrate
live imaging of a D. japonica planarian. Fig. 7 shows time-
lapse results with 192 ms exposure, resulting in a rate of 5.2
frames/s. We note that with brighter LEDs we could reduce
the exposure time and achieve a higher frame rate.
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Fig. 6: Approximately 300,000 image patches of 16 × 16
pixels from the evaluation dataset were used to calculate the
mutual information of the optimized multiplexed image and
the focal stack. The higher the mutual information, the more
we know about the focal stack from the optimized optical
element image. If the mutual information is the same as
the entropy of the focal stack, the optimized optical element
image gives us all the information to determine the focal
stack exactly. We also calculate the mutual information using
a uniform LED illumination pattern and 5 different random
LED patterns. The uniform and random LED patterns are
normalized such that they have the same average value as the
optimized pattern. The mutual information calculated with the
optimized LED pattern and the uniform pattern are shown. We
show the random LED pattern that achieved the highest mutual
information of the 5 random patterns. In this dataset of image
patches, the entropy of the focal stack is 17.84 bits. Thus, we
cannot expect perfect reconstruction from any of the 3 LED
patterns shown, but we can expect the best reconstruction from
the optimized LED illumination pattern.

IV. CONCLUSIONS

In this work, we demonstrate proof-of-concept of a single-
shot method to obtain multiple focal stacks without loss in
image quality, enabling imaging of live, moving samples.
Multiple focal plane imaging allows for understanding of the
3-dimensional structure of the sample. While the proof-of-
concept we demonstrate is promising, there are a number of
limitations that we plan to address in future work.

One limitation of this work is the use of the shift-add algo-
rithm in generating the ground truth focal stacks. The shift-add
algorithm makes the assumptions of geometric optics, leading
to artifacts in the refocused planes. The ground truth could
be collected by mechanical axial scanning instead. Another
method is to use a phase mask in Fourier space on the imaging
side in order to reconstruct the refocused planes using the
assumptions of scalar wave optics [24].

It should also be noted that though 3-dimensional in-

formation is available from multiple focal plane stacks, 3-
dimensional reconstruction cannot be directly inferred. In
fluorescence microscopy, deconvolution algorithms are used
to extract point emitter density in 3 dimensions from focal
plane stacks [25]. This work considers transmission light
microscopy, where the aim is to recover the refractive index at
every point in 3-dimensional space. The scattering from a 3-
dimensional structure can be approximated with the first Born
approximation [24], [26]–[28] or the multi-slice model [29],
[30]. The deep learning approach outlined in this paper can
be applied to directly obtaining the 3-dimensional structure of
the sample from a single multiplexed LED image, using one
of these approximate forward models to iteratively solve for
the ground truth 3-dimensional refractive index.

Another limitation of this work is that we cannot change
the number and spacing of the focal planes after the training
step. This could be solved if we could reconstruct the entire
69 image stack from a single multiplexed LED image. Then,
refocusing to any number of planes and spacings from live
imaging data could be done at any time after data collec-
tion. We note that we were not able to achieve full mutual
information from a single multiplexed LED image for 5 focal
planes. Reconstructing the 69 single LED image stack may
require 2 or more multiplexed LED images. Future work will
determine how many multiplexed images are needed for full
mutual information between the data collected and desired
reconstruction.

To get single-shot imaging of multiple depth planes without
loss of resolution or field-of-view, we trade-off generality of
the imaging method. Our method assumes that the object
imaged comes from the same probability distribution as the
training set of objects. Further work is needed to answer ques-
tions such as: how well does this method work, when training
on objects from one probability distribution, and evaluating on
a different probability distribution? Finally, future work will
quantify exactly how many samples are needed for training.
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