
Self-Supervised Deep Learning for Model Correction in the Computational
Crystallography Toolbox
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Abstract

The Computational Crystallography Toolbox
(CCTBX) is open-source software that allows for
processing of crystallographic data, including
from serial femtosecond crystallography (SFX),
for macromolecular structure determination. We
aim to use the modules in CCTBX to determine
the oxidation state of individual metal atoms in
a macromolecule. Changes in oxidation state are
reflected in small shifts of the atom’s X-ray ab-
sorption edge. These energy shifts can be ex-
tracted from the diffraction images recorded in
serial femtosecond crystallography, given knowl-
edge of a forward physics model. However, as
the diffraction changes only slightly due to the
absorption edge shift, inaccuracies in the for-
ward physics model make it extremely challeng-
ing to observe the oxidation state. In this work,
we describe the potential impact of using self-
supervised deep learning to correct the scien-
tific model in CCTBX and provide uncertainty
quantification. We provide code for forward
model simulation and data analysis, built from
CCTBX modules, at https://github.com/
gigantocypris/SPREAD, which can be inte-
grated with machine learning. We describe open
questions in algorithm development to help spur
advances through dialog between crystallogra-
phers and machine learning researchers. New
methods could help elucidate charge transfer pro-
cesses in many reactions, including key events in
photosynthesis.
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1. Introduction
Crystallography is a branch of science that revolves around
investigating the internal structure of crystals. A typical
crystal is comprised of a series of almost-identical unit cells,
repeated periodically in all directions. Mathematically, it
can be described as a convolution of a single average unit
cell with a periodic three-dimensional lattice. The distribu-
tion of electron density in any crystal can be understood as
a three-dimensional periodic wave in direct (experimental)
space.

X-ray diffraction (XRD) is a common crystallographic tech-
nique used to determine the structure of crystals. In an XRD
experiment, incident radiation is scattered by the electron
density and is subsequently imaged on a detector. The col-
lected diffraction pattern is related to the Fourier transform
of the scatterer density. By the convolution theorem, the
Fourier transform is a product of the Fourier transforms
of the periodic crystal lattice and the electron density in
a single unit cell. In the reciprocal space, this results in
a set of discrete peaks that represent the crystal structure.
Every peak is indexed using Miller indices

#»

h = [h k l]
⊤

and carries some information about the crystal structure in
the form of a structure factor F #»

h . Due to the imperfec-
tion of real crystals, the peaks in the reciprocal space are
not infinitesimally small as expected from theory but rather
slightly diffused. This effect can be modeled by treating the
crystal as a finite set of small mosaic domains, each slightly
misaligned relative to others.

For any fixed orientation, a detector images a two-
dimensional spherical slice of the reciprocal space called
the Ewald sphere. Rotating the crystal in the direct space
rotates its Fourier transform in the reciprocal space, allow-
ing the Ewald sphere to pass through different reciprocal
space peaks, and deposit the information about their shape
and intensity in the form of diffraction spots. The intensity
of each diffraction spot, summed incoherently across all
mosaic domains, is proportional to the modulus squared of
its structure factor F #»

h . The core problem of XRD structure
determination is to retrieve structure factors F #»

h based on
the intensities of all diffraction spots observed on a detector
(Giacovazzo, 2011).
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The Computational Crystallography Toolbox (CCTBX),
is open-source software used to process data collected
in crystallographic experiments to determine |F #»

h |2
of all the diffraction spots in the Fourier transform
(Grosse-Kunstleve et al., 2002). Documentation and
code are available at https://cci.lbl.gov/docs/
cctbx and https://github.com/cctbx/cctbx_
project, respectively. The resulting |F #»

h |2 can be pro-
cessed by another tool such as PHENIX (Liebschner et al.,
2019) in order to solve for the electron density of the macro-
molecule. The package CCTBX models the formation of
diffraction images using knowledge of the underlying imag-
ing physics. From the collected data, the inverse problem
of finding the underlying structure factor amplitudes can be
solved.

Though the conventional use of CCTBX is the determination
of structure factor amplitudes, our aim in this work is to use
CCTBX to determine the oxidation state of individual metal
atoms in a macromolecule. Our scientific goal is to under-
stand charge transfers at the atom level in photosystem II,
a key protein complex in photosynthesis (Bhowmick et al.,
2023). Such knowledge can inform the future development
of solar fuels.

Changes in oxidation state can be extracted from the diffrac-
tion images recorded in serial femtosecond crystallography
(SFX), given knowledge of a forward physics model (Sauter
et al., 2020). However, even slight inaccuracies in the for-
ward physics model make it extremely challenging to deter-
mine the oxidation state. In this work, we describe the poten-
tial impact of using self-supervised deep learning to correct
the scientific model in CCTBX and provide uncertainty quan-
tification. We provide code for forward model simulation
and data analysis, built from CCTBX modules, at https://
github.com/gigantocypris/SPREAD, which can
be integrated with machine learning.

We introduce SFX in Section 2 and structure factor ampli-
tude refinement with NANOBRAGG in Section 3. In Sec-
tion 4, we describe the use of CCTBX and NANOBRAGG
to determine oxidation state of metal atoms with conven-
tional methods. In Section 5, we first describe prior work
in forward physics model correction and physics-informed
variational autoencoders (P-VAEs). We then outline how
P-VAEs with model correction can aid in solving for oxi-
dation state. We conclude Section 5 with open questions
in algorithm development to help spur advances through
dialog between crystallographers and machine learning re-
searchers.

2. Serial Femtosecond Crystallography (SFX)
In a classical diffraction experiment, a single crystal is af-
fixed on a goniometer and cooled down to a cryogenic tem-

perature to limit X-ray radiation damage. Exposure over
a series of orientations allows for collection of a complete
set of spot intensities. However, the information collected
in cryogenic conditions describes a structure far from its
natural state.

(a) (b)

Figure 1. (a) Center portion of still shot of photosystem II in an
SFX experiment. (b) Example shoebox drawn by DIALS.

Serial femtosecond crystallography (SFX) with X-ray free
electron laser (XFEL) pulses allows for room-temperature
measurements. In this modality, many micro-crystals are
imaged sequentially using short X-ray pulses. A single
pulse is used to capture a single “still shot”, recording a
diffraction image of a crystal right before it is destroyed
by the radiation. The measurements can be synchronized
with an auxiliary laser, allowing observation of short-lived
transient states (pump-probe experiments) (Kern et al., 2012;
2013). All still shots are assumed to originate from crystals
with identical chemical composition, but their orientation,
exact unit cell lengths, and mosaicity parameters may vary
from sample to sample (Mendez et al., 2020).

Each still shot is composed of pixels collected from mul-
tiple detector panels, and the detector is described in a
hierarchical manner (Brewster et al., 2018), see Fig. 1a.
The Diffraction Integration for Advanced Light Sources
(DIALS) software package (Winter et al., 2018) is built
on top of CCTBX and can perform diffraction spot find-
ing, see Fig. 1b. The documentation is available at
https://dials.github.io and the code at https:
//github.com/dials/dials. With SFX, the orienta-
tion of the crystal in a still shot, as well as an overall scaling
factor that depends on variations in the incident beam and
volume of illuminated crystal, are initially unknown (Evans
& Murshudov, 2013). The unit cell parameters also vary
from crystal to crystal. After spot finding, DIALS determines
the orientation of the crystal and assigns a Miller index to
each spot. The structure factor amplitudes are then found by
integrating, scaling, and merging the spot intensity values
over all still shots (Winter et al., 2018).

https://cci.lbl.gov/docs/cctbx
https://cci.lbl.gov/docs/cctbx
https://github.com/cctbx/cctbx_project
https://github.com/cctbx/cctbx_project
https://github.com/gigantocypris/SPREAD
https://github.com/gigantocypris/SPREAD
https://dials.github.io
https://github.com/dials/dials
https://github.com/dials/dials
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3. Refinement with NANOBRAGG

No crystal is a perfectly periodic monolith; rather, it can
be better described as a cluster of small periodic domains.
Individual crystalline domains are very similar, but can
slightly vary in their orientation and shape. Every diffrac-
tion spot originating from the crystal is a sum of the intensity
contributions of each mosaic domain. Likewise, the result-
ing diffraction spots from a polychromatic spectrum can
be modeled as the superposition of spots from each wave-
length. Both the incident spectrum and mosaicity are not
considered in DIALS, as the software integrates every spot
without consideration of its shape. Diffraction spot shape
can, however, be modeled with NANOBRAGG, a module in
CCTBX (Holton et al., 2014; Lyubimov et al., 2016).

During integration, DIALS investigates a small region of the
still shot around each spot called a “shoebox.” To solve the
inverse problem of determining the structure factors as well
as other parameters such as orientation and unit cell, the
shoeboxes can be simulated from the underlying parameters
with NANOBRAGG. The simulation can be then compared
with the experimental data to determine a loss function. The
structure factors and shoebox-dependent parameters can be
updated by the gradients with respect to a loss function until
convergence (Mendez et al., 2020). The structure factor
and parameter estimates from DIALS are used as initial
conditions to make the inverse problem computationally
tractable. We note that with both DIALS and NANOBRAGG,
structure factor amplitudes are point estimates; there is no
uncertainty quantification.

4. Spatially Resolved Anomalous Dispersion
Building off of NANOBRAGG and CCTBX, we can determine
the oxidation state of individual metal atoms in a macro-
molecule with data from SFX. Changes in oxidation state
are reflected in slight shifts (on the order of 1-2 electron
volts) of the atom’s K absorption edge. These shifts are
embedded in SFX data. There is a wavelength dependency
in the structure factor F #»

h as the scattering factor of each
atom in the macromolecule includes a complex wavelength-
dependent quantity known as the anomalous scattering fac-
tor (Sauter et al., 2020). Far from the K absorption edge, the
scattering factor is approximately constant over wavelength.
We aim to solve for the anomalous scattering factor for
atoms with K edge near the center wavelength of the inci-
dent spectrum. This technique, known as spatially resolved
anomalous dispersion (SPREAD), can yield insight into
electron movement during a chemical reaction. In particular,
our scientific aim is to solve for the anomalous scattering
factors of the four manganese (Mn) atoms in photosystem
II to elucidate single-electron transfers in photosynthesis
(Sauter et al., 2020).

The structure factor at the Miller index
#»

h is given as the sum
of contributions from each atom m of the macromolecule:

F #»
h (λ) =

∑
m

F #»
h ,m(λ), (1)

where λ denotes the wavelength of incident radiation. As
described in (Sauter et al., 2020), the wavelength dependent
contribution from each atom, F #»

h ,m, can be expressed as:

F #»
h ,m(λ) =

[
f0
m(| #»

Q|) + ∆f ′
m(λ) + i∆f ′′

m(λ)
]
×

exp
[
2πi #  »rm · #»

h
]
× exp(−Bm| #»

Q|2/4),
(2)

where ∆f ′
m and ∆f ′′

m are the real and imaginary parts of
the wavelength-dependent anomalous scattering factor for
the mth atom, related by the Kramer’s Kronig relationship
(Meurer et al., 2022; Sherrell, 2014). The anomalous scat-
tering factor changes with valence state, but is constant
over the magnitude of the scattering vector | #»

Q|. The non-
anomalous scattering factor of the atom is denoted by f0

m

and depends on the scattering vector | #»

Q|. The position of
the atom within the unit cell using fractional coordinates
is #  »rm. The Miller index is denoted by

#»

h , while Bm is the
atom’s temperature-dependent B factor. For an incident
spectrum centered at 6550 eV, the ∆f ′

m and ∆f ′′
m terms

are negligible for all photosystem II atoms, except the four
Mn atoms. The functions ∆f ′

m(λ) and ∆f ′′
m(λ) shift by

a few electron volts between manganese in its 3+ and 4+
oxidation state; this is the change we aim to determine.

The change in the total structure factor due to a change in the
electronic state of a few constituent atoms is small. There
are thus strict requirements on the accuracy of the forward
physics model. For example, an inaccurate description of
crystal mosaicity may lead to an incorrect determination
of the anomalous scattering factors. So far, SPREAD with
SFX data has only been performed successfully with simu-
lated data, with code that extends NANOBRAGG and CCTBX
(Sauter et al., 2020). This prior work on simulated data
results in point estimates of the anomalous scattering fac-
tor as a function of wavelength for the atoms of interest.
Application of the methods to real SFX data has not been
successful thus far. We describe the potential impact of
using self-supervised deep learning to correct the scientific
model and provide uncertainty quantification.

5. Model Correction with Neural Networks
In an inverse problem, we have measurements and a known
forward physics model. Our aim is to discover the source
of those measurements. If we know the source and the for-
ward physics model (the forward problem), determining the
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Figure 2. Generator for source parameters; model correction could be performed with a normalizing flow (Kobyzev et al., 2021).

probability distribution of measurements is straightforward.
However, the inverse problem of determining the source
given the measurements is more challenging and may be ill-
posed. If we have a fully specified forward model, we can
take an optimization-based approach, using gradient descent
to tune an initial guess of the source in order to maximize
the likelihood of achieving the given measurements. The
inverse problem becomes even more challenging if we have
incomplete or incorrect knowledge of the forward model.
The complete, correct form of the forward model may be
unknown due to experimental unknowns and complexities.
If we have measurements on multiple sources, with each
measurement obeying the same underlying (incomplete)
forward model, we may have enough information to both
correct the model and determine all the sources. In this
case, our optimization objective is to maximize the total
likelihood of all measurements, with a penalty for deviating
too far from the known forward physics. Here, we describe
related work, outline our framework for model correction in
SFX, and discuss open questions.

5.1. Related Work

5.1.1. CARELESS

The software package CARELESS (Dalton et al., 2022) pro-
vides a model-free way to correct structure factor amplitudes
|F #»

h | derived from DIALS. Each structure factor from DI-
ALS is assumed to be the product of an image-dependent,
spot-dependent scale factor, and the true structure factor
amplitude. The prior distribution on the true structure factor
amplitude is given; the prior on the scale factor is assumed
to be uninformative. A neural network takes metadata on
the diffraction spot (e.g. crystal orientation, location on the
detector, image number, and Miller index), and outputs a
prediction of the posterior probability distribution of the
corresponding scale factor. Variational inference is used
to train this neural network as well as the parameters of
the distribution estimating the structure factor amplitude
posterior, pushing both distributions to the true posteriors.
Intuitively, variational inference attempts a balance between
maximizing the likelihood of the measured intensity data
while not veering far from the prior distribution on the struc-
ture factor |F #»

h |. The metadata used as input to the neural
network must be chosen judiciously, as it is possible for the
scale factor to overexplain the experimental |F #»

h |, creating
a poor true structure factor amplitude estimate.

Like CARELESS, we aim to perform model correction. How-
ever, our goal is primarily to find anomalous scattering
factors of certain atoms; for SPREAD, we assume the struc-
ture factor amplitude is known. For this task, our frame-
work needs to take into account pixel-by-pixel variations in
diffraction spot shoeboxes, as well as utilize the (partially)
known underlying physics.

5.1.2. PHYSICS-INFORMED VARIATIONAL
AUTOENCODER (P-VAE)

Recent work has evaluated the use of physics-informed vari-
ational autoencoders (P-VAEs) to solve inverse problems in
imaging (Mendoza et al., 2022; Olsen et al., 2022); a similar
formulation is described in (Leong et al., 2023). Specifi-
cally, these works consider a dataset of measurements, with
each measurement on a different unknown source. Due to
experimental limitations, the measurement on each source
is sparse. There is not enough information in a single mea-
surement M to recover the corresponding source S using
conventional optimization methods for inverse problems.
However, the entire dataset of measurements is large, i.e.
there are sparse measurements on many similar sources. The
P-VAE jointly solves for the underlying prior distribution
on the sources P (S) and all the posterior distributions on
the dataset, P (S|M). In SFX, we have a similar problem
where we have sparse (i.e. single orientation) measurements
on many similar but different crystals. The formulation of
the P-VAE can assist in the determination of a probability
distribution for the anomalous scattering factors, as opposed
to yielding just a point estimate.

5.1.3. INCOMPLETE FORWARD MODELS

The frameworks in (Mendoza et al., 2022; Olsen et al., 2022;
Leong et al., 2023) focus on the problem of sparse measure-
ments, they do not consider an incomplete forward model.
A partially specified forward physics model in the context
of a P-VAE is considered in (Takeishi & Kalousis, 2021). A
neural network is trained to transform the incomplete model
into the completed one. The augmented forward model is
penalized for veering from the known incomplete forward
model through additional loss terms added to the P-VAE
loss. To solve for the anomalous scattering factors in SFX,
we face the dual problems of sparse measurements and an
incomplete forward model.
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Figure 3. Hierarchical P-VAE for determining anomalous scattering factors.

5.2. P-VAE for SPREAD

Here, we outline how P-VAEs could be applied to processing
SFX data for SPREAD and describe open questions. Code
and documentation for the SPREAD forward model are
given at https://github.com/gigantocypris/
SPREAD.

We process collected still shots with DIALS, drawing shoe-
boxes around diffraction spots and obtaining estimates for
unit cell shape, orientation, and overall scale factor. We aim
to find a probability distribution of the underlying anoma-
lous scattering factor functions ∆f ′

m(λ) and ∆f ′′
m(λ). To

do so, we can create a “generator” with a latent space z that
can be sampled to yield shoebox source parameters from
the same underlying distribution as the measured shoeboxes.
The generator includes the partially known forward physics
model and model correction; see Fig. 2.

We want to train the generator to maximize the probability
of obtaining the actual shoeboxes. This problem is made
computationally tractable by using an encoder that takes an
actual shoebox and its metadata as input, and approximates
the conditional probability distribution P (z|shoebox). Con-
necting the encoder to the generator creates a P-VAE. The
derivation of the P-VAE loss function with model correction
is given in Appendix A. Training the networks with the P-
VAE loss recovers the distribution governing the anomalous
scattering factors ∆f ′

m(λ) and ∆f ′′
m(λ).

The data of a single shoebox can be represented in a hier-
archical manner, with latent parameters shared amongst all
shoeboxes at the dataset and image levels. We outline the
basic framework of a hierarchical P-VAE in Fig. 3, with
further details in Appendix A. We describe how a similar
framework can be used to refine structure factor amplitudes
in Appendix B.

5.3. Open Questions

We describe a potential framework to use machine learning
for model correction in SFX. However, there are many open
questions, such as:

• What trade-off do we make between following the sci-
entific model generated by first principles and allowing
model corrections with deep neural networks? Relat-
edly, how do we verify correctness?

• Conventional crystallographic data analysis rejects a
significant portion of collected data. Can deep learning
techniques allow for insight to be extracted from poor-
quality data?

• What neural network architecture is needed for model
correction? How sensitive is the procedure to neural
network architecture?

• How do we best incorporate the results from DIALS
and NANOBRAGG for quantities such as unit cell, ori-
entation, scale, and mosaicity?

6. Conclusion
We describe the Computational Crystallography Toolbox
(CCTBX) and the potential for applying self-supervised
physics-informed deep learning methods for analysis in
serial femtosecond crystallography (SFX). A scientific prob-
lem of interest in SFX is determining the anomalous scatter-
ing factors of specific metal atoms in macromolecules. Such
knowledge will allow determination of the oxidation state
of individual metal atoms in the macromolecule, elucidating
charge transfer processes in chemical reactions.

We outline the potential use of deep neural networks to
make arbitrary corrections to the forward model in SFX,
supplementing previous work (Sauter et al., 2020; Mendez
et al., 2020; Brehm et al., 2023) that solely optimizes
variables that parametrize a forward model derived from

https://github.com/gigantocypris/SPREAD
https://github.com/gigantocypris/SPREAD
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first principles. The goal is to correct for experimental
effects of unknown origin, relaxing the stringent model
accuracy requirements for spatially resolved anomalous dis-
persion (SPREAD). These methods have the potential to
improve data analysis, with the impact of discovering new
science by striking a balance between knowledge of an
ideal forward model, and knowledge learned from data.
We present open questions to facilitate collaborations be-
tween crystallographers and deep learning researchers, with
the aim of accelerating progress in SFX. Code for forward
model simulation with CCTBX modules and instructions
for conventional analysis with DIALS are given at https:
//github.com/gigantocypris/SPREAD.
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J., Laksmono, H., Glöckner, C., Echols, N., Sierra, R. G.,
Sellberg, J., Lassalle-Kaiser, B., Gildea, R. J., Glatzel,
P., Grosse-Kunstleve, R. W., Latimer, M. J., McQueen,
T. A., DiFiore, D., Fry, A. R., Messerschmidt, M., Mi-
ahnahri, A., Schafer, D. W., Seibert, M. M., Sokaras, D.,
Weng, T.-C., Zwart, P. H., White, W. E., Adams, P. D.,
Bogan, M. J., Boutet, S., Williams, G. J., Messinger, J.,
Sauter, N. K., Zouni, A., Bergmann, U., Yano, J., and
Yachandra, V. K. Room temperature femtosecond X-ray
diffraction of photosystem II microcrystals. Proceedings
of the National Academy of Sciences of the United States
of America, 109(25):9721–9726, 2012.

Kern, J., Alonso-Mori, R., Tran, R., Hattne, J., Gildea, R. J.,
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A. Derivation of Physics-Informed Variational Autoencoder (P-VAE) Loss
In a variational autoencoder (Kingma & Welling, 2014; Doersch, 2016), the goal is to learn how to generate new examples,
sampled from the same underlying probability distribution as a training dataset of m sources {S1, S2, ...Sm}. In our case,
a single source S fully specifies a diffraction spot shoebox with underlying parameters including orientation, unit cell,
mosaicity, anomalous scattering factors of metal atoms, parameters characterizing the background, and model correction
terms. To accomplish the task of creating a shoebox generator, a latent random variable z is created that describes the
space on a lower-dimensional manifold. A deep neural network defines a function (the “decoder”) from a sample of z to a
conditional probability distribution P (S|z), see Fig. 4.

Figure 4. Generator for sources S.

The parameters of the decoder network are optimized to maximize the probability of generating the independent sources of
the training dataset:

logP (S1, S2, ...Sm) =

m∑
i=1

logP (Si) =

m∑
i=1

log

[∫
P (Si|z)P (z)dz

]
(3)

However, we do not have any ground truth sources S, but rather a dataset of noisy diffraction spot shoebox measurements
{M1,M2, ...Mm}. Each measurement M consists of the pixel intensity values inside the shoebox. If we assume the forward
model P (M |S) is known, instead of maximizing the probability of generating S, we can maximize the probability of
generating the measurements:

logP (M1,M2, ...Mm) =

m∑
i=1

logP (Mi) =

m∑
i=1

log

[∫ ∫
P (Mi|S)P (S|z)P (z)dSdz

]
(4)

This modified “physics-informed” generator is seen in Fig. 5.

Figure 5. Physics-informed generator for sources S. The modifications to a conventional generator are highlighted in red.

If the forward model is only partially specified, the likelihood P (M |S) can be modified to P ∗(M |S) by processing through
a normalizing flow (Kobyzev et al., 2021), see Fig. 2.

A penalty for deviating from the known forward model can be added to the overall optimization objective, such as a
term proportional to the Kullback–Leibler (KL) divergence between the modified and unmodified likelihoods, to force the
generator to try to first explain the data with physics before applying a trainable modification.

We note that different independent latent variables can separately underlie quantities such as unit cell, mosaic shape and size,
and orientation. The latent variables can be organized hierarchically: global over the entire dataset (e.g. anomalous scattering
factors), per image (e.g. orientation, incident photon spectrum), and per shoebox (e.g. background noise parameters). The
crystal is composed of many mosaic domains, each with a different unit cell, shape, size, and mis-orientation; the set of
source parameters can be sampled N times, where N is the number of total mosaic domains modeled. The hierarchical
generator can output shoeboxes with knowledge of the pixel positions on the detector, see Fig. 6.

Considering a single example (as in stochastic training with batch size of 1), we aim to maximize logP (M); for most
sampled values of z′ and S′, the probability P (M |S′, z′) is close to zero, causing poor scaling of sampled estimates to



Self-Supervised Deep Learning for Model Correction in the Computational Crystallography Toolbox

Figure 6. Hierarchical physics-informed generator with model correction for sources S.

the integral
∫ ∫

P (M |S)P (S|z)P (z)dSdz. We follow the P-VAE formulation (Mendoza et al., 2022; Olsen et al., 2022),
estimating the parameters of P (z|M) by processing the measurement M using a deep neural network called the “encoder,”
see Fig. 7.

Figure 7. Hierarchical encoder for a P-VAE.

The output of the encoder is an estimate of P (z|M) denoted as Q(z|M). The KL divergence between the distributions is
given by:

DKL[Q(z|M)||P (z|M)] = Ez∼Q[logQ(z|M)− logP (z|M)] (5)

We also have, by Bayes’ Theorem:

logP (z|M) = logP (M |z) + logP (z)− logP (M) (6)

Combining the expressions yields:

logP (M)−DKL[Q(z|M)||P (z|M)] = Ez∼Q

[
log

∫
P (M |S)P (S|z)dS

]
−D [Q(z|M)||P (z)] . (7)

The first term on the right side of this expression can be estimated with a sample-based estimate. As KL divergence is always
≥ 0 and reaches 0 when Q(z|M) = P (z|M), maximizing the right side during training causes P (M) to be maximized
while forcing Q(z|M) towards P (z|M). When forward model correction is applied, a term can be added to penalize the
distance between P (M |S) and P ∗(M |S). The full physics-informed variational autoencoder is visualized in Fig. 3.
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B. Framework for Structure Factor Refinement
Our focus in this paper is the determination of anomalous scattering factors. Machine learning has great potential for impact
in this area, as there are stringent forward model accuracy requirements. In the solution of anomalous scattering factors, we
assume knowledge of the structure of the macromolecule. However, refinement of the structure factor amplitudes is also
possible from a similar framework, see Fig. 8.

Figure 8. Hierarchical P-VAE for determining structure factor amplitudes.

Initial estimates of structure factor amplitude as well as orientation and unit cell can be found with DIALS and NANOBRAGG.
These values can be used for initial training of the encoder and decoder, allowing a warm-start to the training procedure.


