
HYPPO: A Surrogate-Based Multi-Level
Parallelism Tool for Hyperparameter Optimization

Vincent Dumont∗††, Casey Garner†∗, Anuradha Trivedi‡∗, Chelsea Jones§∗, Vidya Ganapati¶∗,
Juliane Mueller∗, Talita Perciano∗, Mariam Kiran∗, and Marc Day‖

∗ Computing Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
† Department of Mathematics, University of Minnesota Twin Cities, Twin Cities, MN 55414, USA

‡ Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
§ Department of Statistical Sciences & Operations Research, Virginia Commonwealth University, Richmond, VA 23284, USA

¶ Department of Engineering, Swarthmore College, Swarthmore, PA 19081, USA
‖ Computational Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA

†† Corresponding Author: vincentdumont11@gmail.com

Abstract—We present a new software, HYPPO, that enables
the automatic tuning of hyperparameters of various deep learning
(DL) models. Unlike other hyperparameter optimization (HPO)
methods, HYPPO uses adaptive surrogate models and directly
accounts for uncertainty in model predictions to find accurate and
reliable models that make robust predictions. Using asynchronous
nested parallelism, we are able to significantly alleviate the
computational burden of training complex architectures and
quantifying the uncertainty. HYPPO is implemented in Python
and can be used with both TensorFlow and PyTorch libraries. We
demonstrate various software features on time-series prediction
and image classification problems as well as a scientific appli-
cation in computed tomography image reconstruction. Finally,
we show that (1) we can reduce by an order of magnitude the
number of evaluations necessary to find the most optimal region
in the hyperparameter space and (2) we can reduce by two orders
of magnitude the throughput for such HPO process to complete.

I. INTRODUCTION

Deep learning models are increasingly used throughout the

sciences to achieve various goals, including the acceleration of

time-consuming computer simulations, for making predictions

in cases where the underlying physical behavior are poorly un-

derstood, for deriving new insights into physical relationships,

and for decision support. E.g., in [1], a low-fidelity simulation

model is augmented with predictions made by a U-Net to

obtain high-fidelity data at a fraction of the computational cost

of running a high-fidelity simulation. In [2], DL models are

used to make long-term predictions of groundwater levels in

California in order to enable computationally fast predictions

of future water availability. [3] used convolutional neural net-

works (CNNs) for anomaly detection in scientific workflows.

DL models can also be used to co-optimize hardware acqui-

sition parameters with image reconstruction in computational

imaging, as in [4, 5]. [6] used neural networks to predict the

CPU times of Ordinary Differential Equation (ODE) solvers,

thus enabling the optimal selection of ODE solvers.

One obstacle to using DL models in new scientific ap-

plications is the decision about which hyperparameters (e.g.,

number of layers, nodes per layer, batch size) should be used.

The hyperparameters impact the accuracy of the DL model’s

predictions and should therefore be tuned. However, the pre-

dictive performance is subject to variability that arises due

to the use of stochastic optimizers such as stochastic gradient

descent (SGD) for training the models. This variability must be

taken into account during hyperparameter optimization (HPO)

in order to achieve models that produce accurate predictions

reliably.

There are many libraries defined for hyperparameter tun-

ing. Each of them has different strengths, compatibility, and

weakness. Some of the frequently used libraries are Ray-Tune

which supports state-of-the-art algorithms such as population-

based training [7], Bayes Optimization Search (BayesOpt-

Search) [8, 9]; Optuna, which provides easy paralleliza-

tion [10]; Hyperopt, which works both serial and parallel

ways and supports discrete, continuous, conditional dimen-

sions [11]; Polyaxon, which is for large scale applications [12].

However, little work discusses how the prediction uncer-

tainty of deep learning models can be reduced with these

approaches. This paper describes a new software tool, HYPPO,

for automated HPO that is based on ideas from surrogate

modeling, uncertainty quantification, and bilevel black-box

optimization. In contrast to other HPO methods such as

DeepHyper [13] and MENNDL [14], our HPO implementation

directly takes the prediction variability into account to deliver

highly accurate and reliable DL models. We demonstrate

the approach on the CIFAR10 image classification problem,

time series prediction and a computed tomography image

reconstruction application. We take full advantage of high-

performance computing (HPC) environments by using asyn-

chronous nested parallelization techniques to efficiently sam-

ple the high-dimensional hyperparameter space.

81

2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC)

978-1-6654-1124-0/21/$31.00 ©2021 IEEE
DOI 10.1109/MLHPC54614.2021.00013

20
21

 IE
EE

/A
C

M
 W

or
ks

ho
p

on
 M

ac
hi

ne
 L

ea
rn

in
g

in
 H

ig
h

Pe
rf

or
m

an
ce

 C
om

pu
tin

g
En

vi
ro

nm
en

ts
 (M

LH
PC

) |
 9

78
-1

-6
65

4-
11

24
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
LH

PC
54

61
4.

20
21

.0
00

13

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

Relevance, impact, and contribution to the literature:
1) Automated and adaptive HPO for DL models that di-

rectly accounts for uncertainty in model predictions;
2) Significant decrease in the number of evaluations

necessary to identify the most optimal region in the
hyperameter space;

3) Nested parallelism significantly accelerates time-to
solution (up to two orders of magnitude);

4) Compatible with both TensorFlow and PyTorch;
5) HYPPO can run on large compute clusters as well

as laptops and is able to exploit GPU and CPU;
6) Provides reliable and robust models.

II. MOTIVATION

Much work on hyperparameter search extensively studies

applications in CNNs for image recognition [15] or general

deep learning models [13]. Further development of various

hyperparameter search libraries such as RLlib [16], Hyperband

[17], DeepHyper [13], and even hand-tuning help iterate

through multiple settings repeatedly until finding fairly well-

performing hyperparameters. However, deep learning models

can lead to multiple predictions with varying range of values,

even after tuning the hyperparameters. Current hyperparame-

ter tuning libraries often ignore this challenge of prediction

variability. In this work we particularly target this problem

of uncertainty quantification, by building in uncertainty when

tuning hyperparameters. The ability to quantify the prediction

uncertainty of DL models has the advantage that we can

obtain confidence bounds for the DL model’s predictions,

as illustrated in two examples in Figure 1. The additional

information about prediction uncertainty can be very ad-

vantageous in various applications. For instance, instead of

fully trusting a model architecture because of good predictive

performance (which can be interpreted as a single realization

of a stochastic process), UQ provides additional information

on how reliably that architecture performs. If, for example, one

was to predict future groundwater levels to enable sustainable

groundwater management (see [2]), having an idea about the

prediction variability enables managers to develop strategies

that are based on best, worst, and average case performance

information and thus lead to robust management decisions.

Similarly, in classification tasks, scientists may not only be

interested in the class with highest expected probability, but

also in information such as the second or third most probable

class membership as well as uncertainties of those member-

ships which will allow further insights into the significance

of differences between class memberships. In particular, in

scientific applications where determining the correct class may

have huge negative impacts if done incorrectly, this additional

information is highly relevant. The main contributions of

HYPPO include (1) an automated and adaptive search for

hyperparameters using uncertainty quantification to evolve the

best deep neural network solutions for both PyTorch and

Tensorflow codes, and (2) demonstrate the scalability of our

solution using high-performance computing (HPC) to leverage

multiple threads and parallel processing to improve the overall

search time for hyperparameters.

Our experiments cover time series prediction, image classi-

fication, and image reconstruction, and present how surrogate

modeling can help to find optimal deep learning architectures

that minimize the uncertainty in the solutions.

III. BI-LEVEL OPTIMIZATION PROBLEM

Mathematically, we formulate the HPO problem as a bilevel

bi-objective optimization problem:

min
θ,w∗

(�1(θ,w
∗;Dval), �2(θ,w

∗;Dval)) (1)

s.t. θ ∈ Ω (2)

w∗ ∈ arg min
w∈W

L(w;θ,Dtrain). (3)

Here, θ represents the set of hyperparameters to be tuned,

Ω describes the space over which the parameters are tuned

(in our case an integer lattice), and �1 and �2 represent the

loss and loss variability of the trained model, respectively.

Ideally, we want to find optimal θ such that both �1 and

�2 are minimized simultaneously. Note that most commonly

only a single objective that represents a mean squared loss is

minimized and the variability is not accounted for.

The values of �i, i = 1, 2, for each hyperparameter set

for the validation dataset Dval can be computed only after

solving the lower level problem (Eq. 3), in which the weights

and biases w∗ are obtained by training (e.g., with SGD).

Solving this lower level problem is, depending on the size

of the training dataset Dtrain and the size of the architecture,

computationally expensive. The loss variability arises when the

same architecture is trained multiple times because different

solutions w∗ are obtained (see Section IV, Feature 1, for

details), and thus different values for the loss �1 at the upper-

level result. Our goal is to find optimal hyperparameters θ∗

that yield high predictive accuracy (low �1 values) and low

prediction variability (low �2 values).

In order to tackle this problem, we interpret the HPO

problem as a computationally expensive black-box problem

in which the black-box evaluation corresponds to a stochastic

evaluation of �1 with variability �2. Furthermore, to allevi-

ate the complexities of solving a bi-objective optimization

problem, we use a single-objective reformulation in which

a weighted sum of �1 and �2 is minimized and the weights

corresponding to each reflect their respective importance.

To solve our HPO problem, we use ideas from the sur-

rogate model-based optimization algorithm presented in [2]

and extend it to consider the model uncertainty. We make full

use of HPC by exploiting asynchronous nested parallelism

strategies which significantly reduces the time to finding

optimal architectures.

A. Surrogate Model-based HPO

Surrogate models such as radial basis functions (RBFs) [18]

and Gaussian process models (GPs) [19] have been widely

used in the derivative-free optimization literature. These mod-

els are used to map the parameters θ to the model performance

82

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

metrics, �i(θ) (here the dependence of �i on w∗ is implied by

means of interpreting the lower level problem as black-box

evaluation). The surrogate models are computationally cheap

to build and evaluate and thus enable an efficient and effective

exploration of the search space [20]. Adaptive optimization

algorithms using global surrogate models usually consist of

the following three steps:

1) Create an initial experimental design and evaluate the

costly objective function to obtain input-output data

pairs.

2) Build a surrogate model based on all data pairs.

3) Solve a computationally cheap auxiliary optimization

problem on the surrogate model to select new point(s)

at which the expensive function is evaluated and go to

step 2.

In order to apply these methods to HPO, special sampling

strategies that respect the integer constraints of the hyperpa-

rameters are needed (see [2] for details). Moreover, the itera-

tive sampling strategy must take into account the performance

variability, which can be done by defining suitable model

performance metrics.

IV. HYPPO SOFTWARE: DESIGN & FEATURES

In this section, we provide details of specific features of

our HYPPO software and implementation. We describe our ap-

proach to accounting for the prediction variability during HPO,

the proposed surrogate modeling and sampling approaches,

and the asynchronous nested parallelism that enables us to

speed up the calculations significantly.

Feature 1: Uncertainty Quantification

HYPPO employs and applies uncertainty quantification

(UQ) in conjunction with surrogate model-based HPO. The

prediction variability present in Eq. (3) is epistemic where

the variability observed manifests itself because Eq. (3) is

a non-convex problem being solved in-exactly by stochastic

algorithms. Non-convexity limits knowledge of global opti-

mality, while in-exactly solving the lower level problem gives

no guarantee that the w∗ used to evaluate the loss �1 in Eq. (1)

is a stationary point to Eq. (3).

The body of potential UQ approaches to bound the perfor-

mance variability for a fixed hyperparameter set θ is thinned

significantly by the nature of the problem. Since evaluating the

loss is an expensive black-box function, any UQ method that

depends on heavy sampling quickly becomes computationally

intractable. Furthermore, distributional information for the

performance value based on w∗ is unknowable beyond trivial

cases because such knowledge is tied to the local optima of

Eq. (3), which in general are neither computed during train-

ing nor enumerated. An additional blockage to distributional

knowledge comes from the possibility that different global

optima of Eq. (3) likely yield different loss function values in

Eq. (1). Finally, flexible UQ approaches capable of handling

various DL models are essential for the broad applicability of

our software. Considering the inherent difficulties and desired

properties delineated, the central framework we utilize for UQ

is Monte Carlo (MC) dropout [21].

MC dropout was developed in the form presented by Gal

and Ghahramani [21, 22] as an alternative derivation of model
averaging from [23]. The key idea behind MC dropout is to

use standard dropout during testing. Dropout is a technique

often applied to prevent a network from overfitting and thus

improve its generalizability [23, 24]. This is achieved by taking

each node out of the network with some probability p during

training and then multiplying the network’s weights by p dur-

ing test time. Equivalently, as done in PyTorch and TensorFlow

dropout layers, nodes can be dropped with probability p and

the value of the remaining nodes scaled by 1/(1− p) during

training resulting in no scaling of the weights during testing.

So, MC dropout applies dropout on a network at test time,

i.e., when the input is evaluated by forward-propagation, each

node is dropped out with probability p and the output of the

remaining nodes is scaled by 1/(1 − p). Therefore, forward-

propagating the same input through a network using dropout

will produce different outputs on each pass from which we

can obtain a measure of variability for the output. Formulating

this mathematically, let yt(x) be the output of a DL model

for input x on the t-th pass through the network using MC

dropout. From T total passes through the network, we can

compute a sample mean for the output of input x as,

ȳ(x) =
1

T

T∑
t=1

yt(x), (4)

and a sample variance,

σ2
model =

1

T

T∑
t=1

(yt(x)− ȳ(x))
2
, (5)

where the squared terms in Eq. (5) are squared element-wise,

i.e.
[
(a− b)2

]
j
= (aj − bj)

2 for all j where aj is the j-th

element of a. A crucial observation is that MC dropout derives

variability measures from repeated evaluations of a DL model

rather than large numbers of repeated training of the same

model or through the construction of another network. Thus, it

satisfies the general restrictions imposed by the characteristics

of our loss functions in Eq. (1).

Our UQ approach applies MC dropout to a relatively small

set of trained models with the same architecture to form

a weighted average. Combining MC dropout with repeated

training of the same architecture balances the explanatory

power of repetitive training with the computational frugality

of MC dropout. Assume we have N trained models with the

same architecture θ for which we generate T dropout masks

each. We compute the expected output of a trained model with

the same architecture as,

μpred(x) =
wT

N

N∑
i=1

yi(x) +
wD

NT

N∑
j=1

T∑
t=1

yj
t (x), (6)

where yi(x) is the output of the trained model i ∈ {1, . . . , N}
for input x without dropout at test time, yj

t (x) is the output

83

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

(a) Time series prediction of temperature in Melbourne, Australia (b) CIFAR10 image classification

Fig. 1: Application of Monte Carlo dropout to a DL models. In Fig. 1a, the yellow and green regions represent the ±1 and 2
standard deviations from the mean (red line). The cyan lines are the MC dropout predictions and the black dashed lines are the

mean predictions from each of the 5 independent trial models. The DL model used “prediction-on-prediction”, i.e., the model’s

predicted values were utilized in making future predictions. In Fig. 1b, the confidence interval around the mean probability

for each class is shown for a single input image. While the right class (number 8) is correctly identified, the uncertainty of

the output probability provides important information with regard to the stability and accuracy of the trained model.

of the dropout model t ∈ {1, . . . , T} for trained model j ∈
{1, . . . , N}, and wT ≥ 0, wD > 0 with wT + wD = 1. The

variance of the expected output is computed as,

V model(x) =
wT

N

N∑
i=1

(
μpred(x)− yi(x)

)2

+
wD

NT

N∑
j=1

T∑
t=1

(
μpred(x)− yj

t (x)
)2

. (7)

Note that Eqs. (6) and (7) are weighted averages of the

computed mean and variances of the trained models and the

MC dropout models. These equations enable micro-predictions

of the performance uncertainty of a model for a given input.

The weighted average parameters wT and wD, as well as the

number of iterations T of MC dropout per trained model, are

user-defined settings. An example of our modified MC dropout

approach can be seen in Figure 1 for time series prediction

of daily temperature in Melbourne, Australia, and CIFAR10

image classification. Here wT = wD = 0.5 and T = 30,

which correspond to our default values. The robustness of

the model predictions can be measured, for example, in the

average width of the uncertainty bands associated with each

day’s temperature prediction and with each class membership

probability, respectively.

Eqs. (6) and (7) can then be used to obtain confidence

intervals for the loss function value corresponding to a given

hyperparameter set θ. For example, if �1 (θ;w
∗, Dval) is the

mean-squared loss function with validation data set Dval ={
(xi, zi)

}D

d=1
, then we approximate the expectation over w∗

by

Ew∗ (�1) ≈ 1

2D

D∑
d=1

∣∣∣∣zi − μpred(x
i)
∣∣∣∣2.

The intuition is that μpred serves as a good estimate of

the actual expectation of the output over all possible trained

models with architecture θ. Now, from computing the outputs

of each of the trained models, yi(xd), and their many dropout

masks, yi
t(x

d), for all of the inputs xd ∈ Dval, we are able

to compute the value of �1 for each of the models utilized to

compute μpred. Taking the standard deviation of these N+TN
outer loss values gives an estimate for the variability �2 in the

outer loss function for a model with architecture θ. Letting

the value of �1 computed from μpred be the center and using

the aforementioned standard deviation as a radius, we obtain

a confidence interval for the outer objective.

Upon obtaining confidence intervals and output variances

using Eq. (7) for �1, we desire to utilize this additional uncer-

tainty information in the HPO. Our software uses uncertainty

in different ways. The first option for integrating uncertainty

is to use the surrogate models with the value of �1 taken

as its output when computed with μpred. The RBF and GP

based optimization approaches available in the software (see

next section for details) would then run as expected with

confidence intervals being computed and tabulated for all new

hyperparameter settings.

The second option is to use the confidence intervals to

construct an ensemble of RBFs to perform the surrogate

modeling; the RBF ensemble approach uses multiple RBFs

that are generated from the confidence intervals by selecting

uniformly at random from the extremes of these intervals,

i.e., the lower bound, center, and upper bound. Each response

84

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

surface provides an estimate for the value of �1 at potential

hyperparameter candidates, θC
i (see Feature 2 for description

of their generation), and we compute a mean μ(θC
i) and

standard deviation σ(θC
i) over all ensemble predictions for �1

at each candidate point. The selection of the best candidate

point (and thus new hyperparameters to be evaluated) is

determined by which candidate point minimizes a weighted

sum of its distance to previously evaluated points and,

μ(θC
i) + ασ(θC

i), (8)

where α ∈ [−2, 2]. Note that if α = 0, then only the mean

value of �1 predicted by the ensemble is considered when

determining the next hyperparameter setting. If α = 2, a

“pessimistic” approach is taken by penalizing candidate points

with large prediction variability. On the other hand, by setting

α = −2, an “optimistic” stance is taken by preferring candi-

date points with relatively good mean performance and large

standard deviation that may lead to significant improvements.
The first approach can also be adapted to incorporate the

computed variances V model by appending them into the outer

loss function �1. In the HYPPO software, a setting is available

to add a regularization term to the outer objective to create a

regulated loss function �reg,

�reg (θ;w
∗,Dval) = �1 (θ;w

∗,Dval)

+ γ
D∑

d=1

g
(
V model

(
xd

))
, (9)

where g : R
d → R

+ and γ > 0. Thus, choosing γ to be

large relative to the first term places a substantial emphasis on

minimizing the performance variability during the surrogate

modeling. A user could also tailor g to magnify or dampen

the variance to varying degrees or even for particular ranges

of inputs by defining g in a piece-wise fashion, e.g. g(x) =
||max(0,x)||. If this setting is applied, then the value of �reg

is used by the surrogate models while the confidence interval

of �1 is returned during the HPO as previously noted.
In Fig. 2, we show one typical result provided by HYPPO to

the user, showing the distribution of trained model according

to their computed loss and confidence limit. Along with the

total number of trainable parameters for each model, which

characterizes the complexity of the models’ architecture, this

graph provides insightful information that can help users

decide which model is most efficient and suitable for their

problem. A combination of low uncertainty, low loss and

small number of trainable parameters can be considered as

an optimal choice of model.

Feature 2: Surrogate Modeling
Our HPO software contains two different types of surrogate

models, namely RBFs and GPs, and corresponding iterative

sample strategies. The HPO method is, however, general

enough and can easily be extended to other surrogate models.

The RBF surrogate model is of the form,

mRBF(θ) =

n∑
j=1

λjφ (||θ − θj ||2) + p(θ), (10)

Fig. 2: Distributions of the loss, standard deviation and total

number of trainable parameters across 825 trained multi-layer

perceptron (MLP) models with different hyperparameter sets.

The models were used to do time series prediction of the

daily temperature in Melbourne, Australia. While complex

architectures, i.e. high number of trainable parameters, are

found to be clustered, low-complexity models can be identified

in the low-loss, low-uncertainty region, making them suitable

model solutions.

where θj are the sets of hyperparameters for which the

objective function has previously been evaluated, ‖·‖2 denotes

the Euclidean norm, φ(r) = r3, and p(θ) = β0 + βTθ is a

polynomial tail whose form depends on the choice for φ(·).
A system of equations (see Eq. 6 in [2]), dependent on the

value of �1 (or �reg) at the θj’s, is solved to compute λ, β0

and β. When using the RBF ensemble approach as described

in the previous section, the various values sampled from the

confidence intervals are used as the right-hand side of Eq. 6

in [2] thus generating multiple response surfaces.

When making iterative sampling decisions with the RBF

model, we follow the ideas in [25]. We generate a large set of

candidate points by perturbing the best point found so far and

by randomly selecting points from the search space, making

sure we satisfy the integer constraints. For each candidate

point, we use the RBF to predict its function value (e.g., loss)

and we also compute the distance of each candidate point to

all previously evaluated hyperparameters. A weighted sum of

these two criteria is then used to select the best candidate point

at which the next expensive evaluation (model training, MC

dropout) is performed. The weights cycle through a predefined

pattern to enable a repeated transition between local and global

search.

The second type of surrogate model implemented in our

software is GPs. GPs have the advantage that in addition to

providing a prediction of the function value, they also return

an uncertainty estimate of the prediction. When using a GP,

we treat the function as a realization of a stochastic process:

mGP(θ) = ν + Z(θ), (11)

85

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Convergence plot showing the loss value and its 1-σ
deviation for all function evaluations. In purple, we show the

sorted loss values for a random set of 825 hyperparameter

samples generated using low-discrepancy sampling. From that

set, 10 evaluations with high losses were selected (red points)

and used as initial evaluations for surrogate modeling. In

orange, we show the best error loss as the surrogate modeling

is iterating and were able to decrease by an order of magnitude

the amount of evaluations required to find the most optimal

region in the hyperparameter space.

where ν represents the mean of the stochastic process and

Z(θ) ∼ N (0, s2). Therefore, the term Z(θ) represents a

deviation from the mean ν. It is assumed that there exists

a correlation between the errors and that it depends on the

distance between the hyperparameters. For an unsampled set of

hyperparameters, the GP prediction represents the realization

of a random variable with mean ν and variance s2. Further

details on how to compute the mean and variance can be found

in [2, Eqs. 7-13]. When using the GP surrogate model, we

maximize the expected improvement [26] auxiliary function

using a genetic algorithm that can handle the integer con-

straints. This sampling strategy uses the GP-predicted value

of the loss �1 and the corresponding GP-predicted uncertainty

to balance a local and a global search for improved solutions in

the hyperparameter space. The process of utilizing MC dropout

with GP remains unchanged compared to the implementation

with RBF. The only difference is that no ensemble approach,

as detailed for the RBFs, is needed as the GP provides the

prediction mean and standard deviation.

In Fig. 3, we demonstrate the effectiveness of using sur-

rogate modeling and compare the increase of convergence

speed to reach the optimal point in the hyperparameter space,

where the lowest loss model can be achieved with an order of

magnitude fewer iterations.

The improvement in HPO performance with HYPPO from

a different library, e.g. DeepHyper, is shown in Fig. 4. To

do the comparison, we used the polynomial fit problem pro-

vided in DeepHyper’s online documentation1 and we extended

1https://deephyper.readthedocs.io/en/latest/tutorials/hps dl basic.html

Fig. 4: Comparison of convergence plot between our HYPPO

software and the DeepHyper HPO library. We used the

polynomial fit problem provided in the DeepHyper’s online

documentation, allowing 200 iterations. In this example, the

R2 value (also known as ”Coefficient of determination”) is the

metric being maximized.

the complexity of the problem by increasing the number

of hyperparameters to be optimized to six: (1) number of

nodes per layer, (2) number of layers, (3) dropout rate, (4)

learning rate, (5) epochs, and (6) batch size. We applied HPO

with both HYPPO and DeepHyper libraries independently and

evaluated the highdimensional hyperparameter space at a total

of 200 iterations with each method. Ten initial evaluations

were used in HYPPO to build the initial surrogate model.

Our analysis shows that HYPPO and DeepHyper both find

eventually models with the same performance, but HYPPO

finds better hyperparameters faster (fewer iterations) than

DeepHyper, adding further motivation to using HYPPO.

Feature 3: Asynchronous Nested Parallelism

One of the challenges in carrying out HPO for machine

learning applications is the computational requirement needed

to train multiple sets of hyperparameters. In order to address

this problem, the HYPPO software handles parallelization

across multiple hyperparameter evaluations and enables dis-

tributed training for each evaluation. Here, we describe how

the nested parallelism feature is being implemented and used

to maximize efficiency across all allocated resources.

1) Nested parallelism: In Fig. 5, we show how we set

up the parallelization scheme in the software. The HYPPO

software uses GNU parallel [27] to do distributed training of

multiple models in parallel. The program can automatically

generate a SLURM script using the number of SLURM steps

to be executed in parallel (that is, the number of individual

srun instances) and the number of SLURM tasks to be

executed in each step, as defined by the user in the input

configuration file. Since a single processor (either GPU or

CPU, the user decides) will be assigned for each task, the

total number of processors used in a SLURM job is therefore

equal to the number of steps times the number of tasks. For

86

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Diagram illustrating the nested parallelization process

across 6 processors using 2 parallel steps and 3 processors

per step. A single processor is used per SLURM task. If the

user requests uncertainty quantification to be performed on the

trained models, the outer loss will be provided along with its

confidence interval. When surrogate modeling is performed,

the algorithm will gather newly evaluated sample sets across

all parallel steps and make a prediction for the next set of

hyperparameters to evaluate.

instance, proper SLURM directives for a setup with 2 srun
instances running in parallel across 3 GPUs for each step will

read as follows:

#SBATCH --ntasks 6
#SBATCH --gpus-per-task 1

In this case, --ntasks is equal to the total number of

processors to be allocated for the job. Each of the 2 SLURM

steps can then be executed in parallel using GNU parallel

with a --jobs command set to 2. Finally, in order to avoid

individual srun steps to be executed on the same GPUs, we

use the --exclusive command for the srun call which

will ensure that separate processors will be dedicated to each

job step.

Once the program starts, workers will be initialized ac-

cording to the SLURM settings. If the used machine learning

library is PyTorch, the program will do the initialization using

the torch.distributed package. On the other hand, if

the Tensorflow library is used, the Horovod package will be

used to initialize the workers. While the software is flexible

enough to work with external training modules, the library

used in the external package needs to be specified in the input

configuration file so that the program can initialize the workers

accordingly.

Using the SLURM environment variables, we can then loop

over the randomly generated hyperparameter sets, ensuring

that each step executes a different set of hyperparameters.

This can be achieved using Python’s slicing feature where the

subsequence is defined using the step ID and the total number

of steps in the job. When multiple processors are requested

for each evaluation, the loss for the outer objective function

will always be calculated in the first processor (e.g., GPU0

if GPU processors are used) and the value will be recorded

in its corresponding log file. In the meantime, the remaining

processors will wait for the task to be completed by searching

for the recorded value in the first processor’s log file.

2) Data / Trial Parallelization: As quantifying the un-

certainty becomes more accurate with an increasing number

of trials (i.e., repeatedly training the same architecture), the

HYPPO software offers the possibility, in a single SLURM

step, to parallelize the trials instead of the data to be trained on.

Thus, in the example in Figure 5, the SLURM job corresponds

to performing HPO, SLURM steps 1 and 2 correspond to

two different sets of hyperparameters to be evaluated, and

SLURM tasks 1-3 correspond to performing three separate

trainings of each hyperparameter set. For example, suppose for

a specific hyperparameter set, the model is to be trained nine

times. In that case, each GPU will execute three consecutive

independent trainings, and slicing will be applied to the trial

indices using the extracted MPI rank and size values to ensure

that the total number of trials to be computed across all

GPUs in each step is equal to the number of trials requested

by the user. On the other hand, if the user prioritizes the

parallelization over the data (train in parallel), then in the

example in Figure 5, the SLURM job still corresponds to

performing HPO, SLURM steps 1 and 2 correspond to two

different sets of hyperparameters to be evaluated, and SLURM

tasks 1-3 perform the parallel training using a third of the data

per GPU. Again, if the goal was to train each hyperparameter

set nine times, each GPU will execute all nine independent

training trials sequentially.

3) Asynchronous update: The surrogate model-based opti-

mization is updated every time a new input-output data pair

is obtained during the surrogate model-based optimization.

This process is usually done sequentially (one evaluation

per iteration and update of the model) or synchronously

parallel (multiple evaluations simultaneously and update the

model only after all evaluations are completed). This may

require many iterations before the surrogate model adequately

represent the loss function over the entire hyperparameter

space. Moreover, in HPO, each hyperparameter evaluation may

require a different amount of time because architectures of

different sizes have different numbers of weights and biases

that the training process optimizes. Using the aforementioned

87

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Illustration of asynchronous surrogate modeling. Each

rectangle represents an evaluation, the top number corresponds

to the evaluation index and the bottom values are the indices

of the evaluations that were used by the surrogate model to

determine the current hyperparameter set. In this example, 16

initial evaluations were done prior to starting the surrogate

modeling and asynchronous parallelism. The model was then

fitted and predicted 4 new sample sets to evaluate (evaluations

17 through 20 shown in bold). Once the first evaluation com-

pleted, i.e. evaluation 18 in this example, a surrogate model

was refitted using the newly computed evaluation (in addition

to the first 16 evaluations) and a new set of hyperparameters

to evaluate was predicted (here, evaluation 21).

nested parallelization feature, we can use this approach to

predict not one but multiple sets of samples to be evaluated

asynchronously in parallel. The surrogate model is then up-

dated each time a hyperparameter set has been evaluated.

Nevertheless, unlike the initial evaluations that are per-

formed independent of each other, the surrogate modeling

process requires communication between the SLURM steps

in order to retrieve newly evaluated hyperparameter sets from

other srun instances and update the model. In Fig. 6 we

illustrate how evaluations can complete at different times

during the surrogate modeling process. After each completed

evaluation, the HYPPO software reads through all the log

files generated and constantly updated by each processor to

search for newly computed sample sets. Once the search is

complete, the surrogate model is updated and a new sample

set is computed.

V. CASE STUDY: CT IMAGE RECONSTRUCTION

This section describes a relevant scientific application from

computed tomography (CT) and demonstrates the impact of

our HPO process on the results. CT is a three-dimensional

imaging technique that measures a series of two-dimensional

projections of an object rotated on a fixed axis relative to

the direction of an X-ray beam. The collection of projections

from different angles at the same cross-sectional slice of

the object is called a 2D sinogram, which is the input to a

reconstruction algorithm. The final 3D reconstructed volume

is called a tomogram, which is assembled from the indepen-

dent reconstructions of each measured sinogram. Tomographic

imaging is used in various fields, including biology [28],

medicine [29], materials science [30], and geoscience [31],

allowing for novel observations that enable enhanced structural

analysis of subjects of interest.

High-quality tomographic reconstruction generally requires

measuring projections at many angles. However, collecting

sparsely sampled CT data (i.e., sparse distribution of angle

measurements) has the benefit of exposing the subject to less

radiation and improving temporal resolution. In sparse angle

CT, where few angles are available in the measured sinograms,

computing the reconstruction is a severely ill-posed inverse

problem. When using standard algorithms, the reconstructions

will be noisy and obstructed with streak-like artifacts. In recent

years, a class of algorithms using deep learning has come

into prominence [32, 33, 34, 35, 36, 37, 38]. Such approaches

show superior performance compared to standard algorithms

by using a trained neural network to solve the inverse problem

of sparse angle CT reconstruction.

Here, we use HPO to optimize a deep neural network

architecture for performing sinogram inpainting, an approach

that has found success in other works [39, 40]. The missing

angles of a sparsely sampled sinogram are filled in by a trained

neural network, after which the completed sinogram can be

reconstructed using any standard algorithm.

A. Data and Architecture

Fig. 7: Test data examples for the CT reconstruction problem.

We use a simulated dataset created with XDesign, a Python

package for generating X-ray imaging phantoms [41]. The

dataset comprises 17500 images of 128 × 128 pixels (13500
training, 1500 validation, 2500 test examples) of circles of

various sizes, emulating the different feature scales present in

experimental data as shown in Fig. 7. We use TomoPy [42],

a Python package for tomographic image reconstruction and

analysis, to generate sinograms of these images with 20 angles.

To emulate sparse angle CT, every other angle is removed from

the sinogram and Poisson noise is added.

The neural network architecture used in this problem takes

the form of a U-Net, a type of CNN that has shown success

in biomedical image processing problems [43]. The input

of the U-Net is the sparse angle sinogram, and the desired

output is the completed sinogram. Our variation of the U-

Net architecture consists of an equivalent number of down-

sampling and upsampling blocks. Within each block, several

intermediate convolution layers preserve the size of the input,

88

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

and a final convolution layer increases the number of feature

maps (channels). We selected eight hyperparameters for HPO,

enumerated in Table I. HPO aims to minimize the mean

squared error between the actual and predicted sinograms of

the validation dataset.

TABLE I: A total of eight hyperparameters were selected for

hyperparameter optimization: (1) number of output feature

maps of the initial block, (2) multiplier for the number of

feature maps in each subsequent block, (3) number of blocks,

(4) intermediate layers, (5) convolutional kernel size and (6)

stride of the final layer in each block, (7) dropout probability

and (8) intermediate layer kernel size. The first eight rows

show the value of each hyperparameter and the last four

rows contain the training results and image metric quantities

averaged over the test dataset. Columns (a) and (d) are the

results of the network trained with the minimum and maximum

values for each hyperparameter, respectively. Columns (b) and

(c) are the results of training the neural network with the

best and worst hyperparameter values sampled by HYPPO,

respectively.

Parameters (a) (b) (c) (d)

(1) 8 9 10 12
(2) 1.0 1.0 1.2 1.4
(3) 2 2 3 4
(4) 1 1 4 4
(5) 2 3 4 5
(6) 1 1 2 2
(7) 0.00 0.01 0.08 0.1
(8) 2 3 5 5
MSE 2.98E−5 3.39E−5 1.56E−3 2.46E−3
PSNR 35.2 34.6 18.7 16.4
SSIM 0.965 0.988 0.970 0.955

The resulting sinogram from the trained U-Net is recon-

structed by TomoPy using the Simultaneous Iterative Re-

construction Technique (SIRT) [44], which has shown the

ability to produce accurate reconstructions given incomplete

datasets. SIRT iteratively minimizes the error between the

measured projections and the projections calculated from the

reconstruction at the current iteration k. The average error

is then backprojected to refine the reconstruction at each

iteration. For an inverse problem Ax = b, the SIRT update

equation is:

xk+1 = xk + CA�R (b− Axk) ,

where C and R are diagonal matrices that contain the inverse

of the sum of the columns and rows, respectively, of A.

B. Results

We analyze two aspects of applying HPO to the case study

of CT image reconstruction: 1) job speedup as a function of the

number of SLURM steps and SLURM tasks for the specific

configuration of running the evaluation operation (see Sec.

IV-2) and 2) improvement due to optimizing the hyperparam-

eters. HYPPO is executed on the Cori supercomputer, housed

at the National Energy Research Scientific Computing Center

at Lawrence Berkeley National Laboratory (NERSC). Cori is a

Fig. 8: Job speedup as a function of the number of SLURM

steps and number of SLURM tasks is shown for evaluating 50

different hyperparameter sets and five trials for each. Up to 96

GPU processors from the NERSC/Cori cluster were used to

evaluate performance and scalability of our software. Lower

speedup values correspond to better performance.

Cray XC40 system comprised of 2,388 nodes each containing

two 2.3 GHz 16-core Intel Haswell processors and 128 GB

DDR4 2133 MHz memory, and 9,688 nodes each containing a

single 68-core 1.4 GHz Intel Xeon Phi 7250 (Knights Landing)

processor and 96 GB DDR4 2400 GHz memory. Cori also

provides 18 GPU nodes, where each node contains two sockets

of 20-core Intel Xeon Gold 6148 2.40 GHz, 384 GB DDR4

memory and 8 NVIDIA V100 GPUs (each with 16 GB HBM2

memory). We use the Haswell processor and the GPU nodes

for the results presented in this section.

Fig. 9: Scatter plot of median loss value versus median

absolute deviation. The loss and median absolute deviation are

computed over 50 training trials for each of 50 hyperparameter

evaluations. In the bottom left region, a simple architecture

(less than 50k trainable parameters) can be found which

provides an accurate (low loss) and efficient (low variability)

solution.

89

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: Comparison of the complete sinogram with the sparse

and inpainted (neural network output) sinograms for a test

example. The reconstruction for each sinogram is performed

using the SIRT algorithm, described in Section V-A. Error

metrics of per-pixel mean squared error (MSE, lower is better),

structural similarity (SSIM, larger is better), and peak signal-

to-noise ratio (PSNR, larger is better) compared to the ref-

erence reconstruction, showing the improvement of using the

inpainted sinogram with optimized network hyperparameters

over the sparse sinogram and inpainted sinogram with sub-

optimal network hyperparameters.

The first experiment consists of running 50 different hy-

perparameter evaluations with five trials for each evaluation.

Fig. 8 reports the maximum speedup resulting from this exper-

iment across each SLURM step and SLURM task. The neural

network is trained for 300 iterations using the entire training

dataset of 13500 images. We observe an improvement of two

orders of magnitude in speedup between the combination of 1

SLURM task/1 SLURM step and 6 SLURM tasks/16 SLURM

steps.

Fig. 9 shows the outer loss function value plotted against the

median absolute deviation. Here, we evaluated each hyperpa-

rameter set 50 times to compute the median outer loss function

value and standard deviation. An outer loss value of 24.81

is achieved within four iterations when performing Gaussian

process surrogate modeling, which may not be guaranteed by

random sampling alone, emphasizing the importance of HPO

in this case study.

Fig. 11: The absolute error maps for each example in Fig. 10.

The baseline comparison for each error map is the complete

sinogram.

We also assess the performance of the U-Net after running

HPO, comparing the quality of the reconstruction obtained

with the neural network output to the original (complete)

sinogram. The optimal network hyperparameters found with

HPO show improved reconstructions compared to other hy-

perparameters sampled during HPO (see Figs. 10 and 11, and

Table I) demonstrating the importance of HPO to this case

study. We also show the results of training the network for

values at the lower and upper bounds (set by the user) of

all eight hyperparameters, which define the hyperparameter

search space. For the results in Figs. 10 and 11, and Table I,

each neural network architecture was trained for 100000 iter-

ations. We use the structural similarity index measure (SSIM)

to quantify how similar the sparse and inpainted sinogram

reconstructions are to the complete sinogram reconstruction.

SSIM values range between −1 and 1, with values closer to

1 indicating very similar structures between the two images

being compared. SSIM, unlike MSE and PSNR, does not

measure absolute error, allowing structural differences to be

characterized.

VI. DISCUSSIONS

In the previous sections we demonstrated different features

of our HYPPO software for finding optimal hyperparameters

of neural nets. Although our results are promising on different

applications, two aspects of our HYPPO method require

further development in order to improve its efficiency. First, a

sensitivity analysis (SA) of the model’s performance regarding

the hyperparameters is needed. If we could identify the subset

of hyperparameters that most impact the model’s performance,

we could significantly reduce the number of hyperparameter

sets that need to be tried during the optimization because

the search space would be smaller. Thus, additional savings

in optimization time could be achieved. Second, our current

90

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

initial experimental design is created by randomly sampling

integer values from the hyperparameter space. Using a type of

space-filling design (e.g., a low-discrepancy sequence) instead

would be preferable, and thus our initial surrogate models

could be improved. However, there are obstacles for both

space-filling designs and sensitivity analysis when parameters

have integer constraints, as in our problem. Off-the-shelf SA

methods such as the ones implemented in the SALib open-

source library in Python [45] only work for continuous pa-

rameters. Low discrepancy sampling methods such as Sobol’s

sequences [46] generate evenly distributed points across the

sample space, avoiding large clusters and gaps between the

points. However, these methods are not easily modified for

integer constraints and must be developed further. Simply

rounding or truncating continuous values to obtain integers

does not deliver the required sample characteristics for SA

and sample designs to be maximally effective. However, it

is possible to formulate and solve an integer optimization

problem to achieve the desired sample distribution. There is

also an opportunity to modify the computation of the sample

points in Sobol’s sequences. These aspects will be a future

feature in our software.

Another aspect in our HYPPO software that requires fur-

ther analysis is the parameters, including initial experimental

design sizes, the weights wT and wD used to balance the im-

portance of expected performance and uncertainty, the number

of times a given hyperparameter set should be trained, and how

many hyperparameters should be tried in total. The weights wT

and wD are user-defined and should reflect the user’s averse-

ness to model variability. The number of hyperparameters to

be tried in total usually depends on the amount of available

compute budget. The size of the initial experimental design

influences how well the initial surrogate model approximates

the objective function. Typically, larger initial experimental

designs give better surrogate model performance at first, but it

also means that fewer adaptively selected hyperparameters will

be evaluated due to the compute budget. Another potentially

impactful parameter is the dropout rate. Currently, a default

value is used, but in the future we will include it in our

hyperparameters to be optimized. Lastly, in this study we did

not take noise in the data into account. In the future we will

analyze how small variations in the training data propagate

through the network and impact the predictive performance

and reliability of the DL models.

VII. CONCLUSIONS

In this paper, we demonstrated a new method for conducting

hyperparameter optimization of deep neural networks while

taking into account the prediction uncertainty that arises from

using stochastic optimizers for training the models. Compu-

tationally cheap surrogate models are exploited to reduce the

number of expensive model trainings that have to be done.

We showed the quality of the solutions found on a variety

of datasets and how asynchronous nested parallelism can

be exploited to significantly accelerate the time-to-solution.

The HYPPO software comes with a number of features,

allowing the user to conduct simple HPO, UQ, and HPO under

uncertainty. Model variability that arises from using stochastic

optimizers when training models is rarely addressed in ML

literature, but it can have a considerable effect, particularly

in scientific applications for which dataset sizes are often

limited. High variability of the model performance can have

a significant impact on decisions being made, and these

decisions should be made with confidence by using reliable

models. Our software is a first step towards providing these

much needed reliable and robust models. Finally, HYPPO

was developed as an open-source software and will be made

publicly available in the future via the pip Python package

manager. More information about the software, including a de-

tailed documentation can be found at https://hpo-uq.gitlab.io/.

REPRODUCIBILITY

As we strive to make this research fully transparent, step-

by-step instructions are provided in the HYPPO online docu-

mentation (see link in the previous section) to allow complete

reproduction of this work.

ACKNOWLEDGEMENT

Vincent Dumont, Mariam Kiran, and Juliane Mueller are

supported by the Laboratory Directed Research and Devel-

opment Program of Lawrence Berkeley National Laboratory

and the Office of Advanced Scientific Computing Research

under U.S. Department of Energy Contract No. DE-AC02-

05CH11231. Vidya Ganapati and Talita Perciano were sup-

ported by the U.S. Department of Energy, Office of Science,

Office of Workforce Development for Teachers and Scientists

(WDTS) under the Visiting Faculty Program (VFP). Casey was

supported by National Science Foundation (NSF) through the

Mathematical Sciences Graduate Internship (MSGI) program.

Anuradha Trivedi was supported in part by the U.S. Depart-

ment of Energy, Office of Science, Office of Workforce Devel-

opment for Teachers and Scientists (WDTS) under the Science

Undergraduate Laboratory Internship (SULI) program, and

in part by the Office of Advanced Scientific Computing

Research, of the U.S. Department of Energy under Contract

No. DE-AC02-05CH11231, through the grant “Scalable Data-

Computing Convergence and Scientific Knowledge Discov-

ery”, which also partially supported Talita Perciano.

This research used resources of the National Energy Re-

search Scientific Computing Center (NERSC), a U.S. De-

partment of Energy Office of Science User Facility located

at Lawrence Berkeley National Laboratory, operated under

Contract No. DE-AC02-05CH11231.

REFERENCES

[1] J. Pathak, M. Mustafa, K. Kashinath, E. Motheau, T. Kurth,
and M. Day, “Using machine learning to augment coarse-grid
computational fluid dynamics simulations,” 2020.

[2] J. Müller, J. Park, R. Sahu, C. Varadharajan, B. Arora,
B. Faybishenko, and D. Agarwal, “Surrogate optimization of
deep neural networks for groundwater predictions,” Journal
of Global Optimization, May 2020. [Online]. Available:
https://doi.org/10.1007/s10898-020-00912-0

91

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

[3] P. Krawczuk, G. Papadimitriou, S. Nagarkar, M. Kiran,
A. Mandal, and E. Deelman, “Anomaly detection in scientific
workflows using end-to-end execution gantt charts and
convolutional neural networks,” in Practice and Experience
in Advanced Research Computing, ser. PEARC ’21. New
York, NY, USA: Association for Computing Machinery, 2021.
[Online]. Available: https://doi.org/10.1145/3437359.3465597

[4] Y. F. Cheng, M. Strachan, Z. Weiss, M. Deb, D. Carone, and
V. Ganapati, “Illumination pattern design with deep learning
for single-shot Fourier ptychographic microscopy,” Optics
Express, vol. 27, no. 2, pp. 644–656, Jan. 2019. [Online].
Available: https://doi.org/10.1364/OE.27.000644

[5] A. Robey and V. Ganapati, “Optimal physical preprocessing
for example-based super-resolution,” Optics Express, vol. 26,
no. 24, pp. 31 333–31 350, Nov. 2018. [Online]. Available:
https://doi.org/10.1364/OE.26.031333

[6] S. Lapointe, S. Mondal, and R. A. Whitesides, “Data-driven
selection of stiff chemistry ode solver in operator-splitting
schemes,” Combustion and Flame, vol. 220, pp. 133–143, 2020.

[7] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki,
J. Donahue, A. Razavi, O. Vinyals, T. Green, I. Dunning,
K. Simonyan, C. Fernando, and K. Kavukcuoglu, “Population
based training of neural networks,” 2017.

[8] F. Nogueira, “Bayesian Optimization: Open source constrained
global optimization tool for Python,” 2014–. [Online].
Available: https://github.com/fmfn/BayesianOptimization

[9] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Proceedings
of the 25th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’12. Red Hook, NY,
USA: Curran Associates Inc., 2012, p. 2951–2959.

[10] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:
A next-generation hyperparameter optimization framework,”
2019.

[11] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science
of model search: Hyperparameter optimization in hundreds of
dimensions for vision architectures,” in Proceedings of the
30th International Conference on International Conference on
Machine Learning - Volume 28, ser. ICML’13. JMLR.org,
2013, p. I–115–I–123.

[12] S. Y. Mudugandla, “10 hyperparameter optimiza-
tion frameworks.” https://towardsdatascience.com/
10-hyperparameter-optimization-frameworks-8bc87bc8b7e3,
year=2020.

[13] P. Balaprakash, M. Salim, T. D. Uram, V. Vishwanath, and
S. M. Wild, “Deephyper: Asynchronous hyperparameter search
for deep neural networks,” in 2018 IEEE 25th International
Conference on High Performance Computing (HiPC), 2018, pp.
42–51.

[14] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and
R. M. Patton, “Optimizing deep learning hyper-parameters
through an evolutionary algorithm,” in Proceedings of
the Workshop on Machine Learning in High-Performance
Computing Environments, ser. MLHPC ’15. New York, NY,
USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2834892.2834896

[15] X. Xiao, M. Yan, S. Basodi, C. Ji, and Y. Pan, “Efficient
hyperparameter optimization in deep learning using a variable
length genetic algorithm,” 2020.

[16] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “RLlib: Abstractions
for distributed reinforcement learning,” in Proceedings of
the 35th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, J. Dy and
A. Krause, Eds., vol. 80. StockholmsmÃCssan, Stockholm
Sweden: PMLR, 10–15 Jul 2018, pp. 3053–3062. [Online].
Available: http://proceedings.mlr.press/v80/liang18b.html

[17] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Tal-
walkar, “Hyperband: A novel bandit-based approach to hyper-
parameter optimization,” J. Mach. Learn. Res., vol. 18, no. 1,
p. 6765–6816, Jan. 2017.

[18] M. Powell, Advances in Numerical Analysis, vol. 2: wavelets,
subdivision algorithms and radial basis functions. Oxford Uni-
versity Press, Oxford, pp. 105-210. Oxford University Press,
London, 1992, ch. The Theory of Radial Basis Function Ap-
proximation in 1990.

[19] G. Matheron, “Principles of geostatistics,” Economic Geology,
vol. 58, pp. 1246–1266, 1963.

[20] D. Jones, “A taxonomy of global optimization methods based
on response surfaces,” Journal of Global Optimization, vol. 21,
pp. 345–383, 2001.

[21] Y. Gal and Z. Ghahramani, “Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning,” in Proceedings of The 33rd International Conference
on Machine Learning, ser. Proceedings of Machine Learning
Research, M. F. Balcan and K. Q. Weinberger, Eds.,
vol. 48. New York, New York, USA: PMLR, 20–
22 Jun 2016, pp. 1050–1059. [Online]. Available: http:
//proceedings.mlr.press/v48/gal16.html

[22] Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation,
University of Cambridge, 2016.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1,
p. 1929–1958, Jan. 2014.

[24] A. Labach, H. Salehinejad, and S. Valaee, “Survey of dropout
methods for deep neural networks,” ArXiv, vol. abs/1904.13310,
2019.

[25] R. Regis and C. Shoemaker, “A stochastic radial basis function
method for the global optimization of expensive functions,”
INFORMS Journal on Computing, vol. 19, pp. 497–509, 2007.

[26] D. Jones, M. Schonlau, and W. Welch, “Efficient global opti-
mization of expensive black-box functions,” Journal of Global
Optimization, vol. 13, pp. 455–492, 1998.

[27] O. Tange, GNU Parallel 2018. Ole Tange, Apr. 2018.
[Online]. Available: https://doi.org/10.5281/zenodo.1146014

[28] L. D. Wise, C. T. Winkelmann, B. Dogdas, and
A. Bagchi, “Micro-computed tomography imaging and
analysis in developmental biology and toxicology,” Birth
Defects Research Part C: Embryo Today: Reviews,
vol. 99, no. 2, pp. 71–82, 2013. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/bdrc.21033

[29] G. D. Rubin, “Computed Tomography: Revolutionizing the
Practice of Medicine for 40 Years,” Radiology, vol. 273,
no. 2S, pp. S45–S74, Nov. 2014. [Online]. Available:
http://pubs.rsna.org/doi/10.1148/radiol.14141356

[30] S. Garcea, Y. Wang, and P. Withers, “X-ray computed
tomography of polymer composites,” Composites Science
and Technology, vol. 156, pp. 305–319, Mar. 2018.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0266353817312460

[31] V. Cnudde and M. N. Boone, “High-resolution X-ray computed
tomography in geosciences: A review of the current technology
and applications,” Earth-Science Reviews, vol. 123, pp. 1–17,
Aug. 2013. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S001282521300069X

[32] D. Y. Parkinson, D. M. Pelt, T. Perciano, D. Ushizima,
H. Krishnan, H. S. Barnard, A. A. MacDowell, and J. Sethian,
“Machine learning for micro-tomography,” in Developments
in X-Ray Tomography XI, vol. 10391. International Society
for Optics and Photonics, Sep. 2017, p. 103910J. [Online].
Available: https://doi.org/10.1117/12.2274731

[33] D. Pelt, J. Batenburg, and J. Sethian, “Improving tomographic
reconstruction from limited data using Mixed-Scale Dense

92

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

convolutional neural networks,” Journal of Imaging, vol. 4,
no. 11, pp. 128–128, Oct. 2018. [Online]. Available:
https://ir.cwi.nl/pub/28279

[34] D. Ayyagari, N. Ramesh, D. Yatsenko, T. Tasdizen, and
C. Atria, “Image reconstruction using priors from deep
learning,” in Medical Imaging 2018: Image Processing, vol.
10574. International Society for Optics and Photonics, Mar.
2018, p. 105740H. [Online]. Available: https://doi.org/10.1117/
12.2293766

[35] Y. Huang, T. Würfl, K. Breininger, L. Liu, G. Lauritsch, and
A. Maier, “Some investigations on robustness of deep learning
in limited angle tomography,” in Medical Image Computing
and Computer Assisted Intervention – MICCAI 2018, A. F.
Frangi, J. A. Schnabel, C. Davatzikos, C. Alberola-López, and
G. Fichtinger, Eds. Cham: Springer International Publishing,
2018, pp. 145–153.

[36] S. Bazrafkan, V. Van Nieuwenhove, J. Soons,
J. De Beenhouwer, and J. Sijbers, “Deep Learning
Based Computed Tomography Whys and Wherefores,”
arXiv:1904.03908 [cs, eess], Apr. 2019. [Online]. Available:
http://arxiv.org/abs/1904.03908

[37] L. Fu and B. D. Man, “A hierarchical approach to deep
learning and its application to tomographic reconstruction,”
in 15th International Meeting on Fully Three-Dimensional
Image Reconstruction in Radiology and Nuclear Medicine, vol.
11072. International Society for Optics and Photonics, May
2019, p. 1107202. [Online]. Available: https://doi.org/10.1117/
12.2534615

[38] J. He and J. Ma, “Radon inversion via deep learning,” in
Medical Imaging 2019: Physics of Medical Imaging, vol.
10948. International Society for Optics and Photonics, Mar.
2019, p. 1094810. [Online]. Available: https://doi.org/10.1117/
12.2511643

[39] H. Lee, J. Lee, and S. Cho, “View-interpolation of sparsely sam-
pled sinogram using convolutional neural network,” in Medical
Imaging 2017: Image Processing, vol. 10133. International
Society for Optics and Photonics, Feb. 2017, p. 1013328.

[40] Z. Li, W. Zhang, L. Wang, A. Cai, N. Liang, B. Yan, and
L. Li, “A sinogram inpainting method based on generative
adversarial network for limited-angle computed tomography,” in
15th International Meeting on Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine, vol. 11072.
International Society for Optics and Photonics, May 2019, p.
1107220.

[41] D. J. Ching and D. Gürsoy, “Xdesign: an open-source software
package for designing x-ray imaging phantoms and experi-
ments,” Journal of Synchrotron Radiation, vol. 24, no. 2, pp.
537–544, 2017.

[42] D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, “Tomopy: a
framework for the analysis of synchrotron tomographic data,”
Journal of synchrotron radiation, vol. 21, no. 5, pp. 1188–1193,
2014.

[43] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted
intervention. Springer, 2015, pp. 234–241.

[44] P. Gilbert, “Iterative methods for the three-dimensional
reconstruction of an object from projections,” Journal of
Theoretical Biology, vol. 36, no. 1, pp. 105–117, 1972.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/0022519372901804

[45] J. Herman and W. Usher, “SALib: An open-source python
library for sensitivity analysis,” The Journal of Open Source
Software, vol. 2, no. 9, jan 2017. [Online]. Available:
https://doi.org/10.21105/joss.00097

[46] I. M. Sobol, “Global sensitivity indices for nonlinear mathemat-
ical models and their monte carlo estimates,” Mathematics and

computers in simulation, vol. 55, no. 1-3, pp. 271–280, 2001.

93

Authorized licensed use limited to: Swarthmore College Library. Downloaded on October 31,2022 at 03:10:00 UTC from IEEE Xplore. Restrictions apply.

